

Membran-Druckausdehnungsgefäße

Reflex -

seit Jahrzehnten eine starke Marke

Das Unternehmen Reflex Winkelmann GmbH — als Bestandteil des Geschäftsbereichs Building+Industry — gehört zu den führenden Anbietern hochwertiger Systeme für Heizungs- und Warmwasser-Versorgungstechnik. Das Unternehmen mit Hauptsitz im westfälischen Ahlen entwickelt, produziert und vertreibt unter der Marke Reflex neben Membran-Druckausdehnungsgefäßen innovative Komponenten und ganzheitliche Lösungen für Druckhaltung, Nachspeisung, Entgasung und Wasseraufbereitung, Warmwasserspeicher und Plattenwärmetauscher sowie Hydraulische Verteil- & Speicherkomponenten. Mit weltweit über 1.500 Mitarbeitern ist die Reflex Winkelmann GmbH international in allen wichtigen Märkten präsent.

Mit einem klaren Bekenntnis zur Nachhaltigkeit und den von der Bundesregierung beschlossenen klimapolitischen Zielen leistet das Unternehmen mit energieeffzienten und nachhaltigen Produkten heute schon einen wesentlichen Beitrag. Bewährte Technologien sowie zukunftsweisende Innovationen bilden dabei die Grundlage. Partnerschaftliche Zusammenarbeit, konsequente Kundenorientierung sowie ergänzende Services wie eine eigene Werkskundendienstflotte sowie ein umfangreiches Schulungsangebot runden das Leistungsspektrum ab.

Inhalt

Reflex City	S. 4
Druckhaltung	6 6
Aufgaben von Druckhaltesystemen	S. 6
Auswahl und Dimensionierung	S. 8
Reflex	
Entscheidende Vorteile	S. 10
Produktprogramm Reflex	S. 11
Auswahl und Berechnung	S. 19
Installation und Inbetriebnahme	S. 30
Refix	
Entscheidende Vorteile	S. 35
Produktprogramm Refix	S. 36
Auswahl und Berechnung	S. 45
Installation und Inbetriebnahme	S. 52
Services	S. 54

Neue Auslegungssoftware

→ erfahren Sie mehr auf Seite 54

Reflex City

Zuverlässige Druckhaltung für alle Anforderungen

Wohnen, Einkaufen, Arbeiten und Produzieren: Stadt bedeutet Vielfalt. So individuell wie die Gebäude sind die Anforderungen an die Versorgungstechnik. Von der 5-kW-Anlage im Einfamilienhaus bis zum sicherheitsrelevanten Kühlsystem eines Rechenzentrums – Reflex bietet Produkte und Lösungen für Anlagen jeder Größe und Komplexität.

Dieses Selbstverständnis spiegelt sich im Bild der Reflex City wider. Überall dort, wo es auf den richtigen Druck ankommt, finden sich die Reflex Druckhaltesystem. Als Marktführer bietet Reflex vielseitige Einsatzmöglichkeiten: von der Solaranlage im Eigenheim über den direkten Einbau in Boilern bis hin zur Trinkwasserversorgung in Wohnkomplexen.

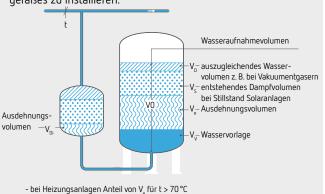
Druckhaltung

Aufgaben von Druckhaltesystemen

Die richtigen Druckverhältnisse sind Grundvoraussetzung für die einwandfreie Funktion von Heiz-, Solar- und Kühlwassersystemen sowie Druckerhöhungsanlagen. Wie alle anderen Stoffe ändert Wasser bei Temperaturänderung sein Volumen. Im Gegensatz zu anderen Flüssigkeiten dehnt sich Wasser jedoch nicht proportional zur Temperatur aus. Da Wasser nicht komprimierbar ist, bedeutet dies bei Temperaturveränderungen in einem geschlossenen System einen rasanten Druckanstieg.

Die optimale Druckhaltung lässt sich – in Abhängigkeit vom Einsatzgebiet – durch zwei verschiedene Druckhaltesysteme erreichen:

- Statische Druckhaltesysteme (Membran-Druckausdehnungsgefäße)
- Dynamische Druckhaltesysteme

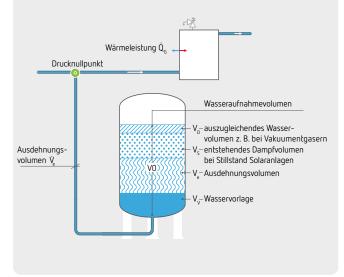

Weitere Informationen finden Sie in der Broschüre Dynamische Druckhaltesysteme

Im Wesentlichen müssen Druckhaltesysteme drei wichtige Aufgaben erfüllen:

- Den Druck an jeder Stelle des Anlagensystems in zulässigen Grenzen halten. Das bedeutet keine Überschreitung des zulässigen Betriebsüberdrucks, aber auch Sicherstellung eines Mindestdrucks zur Vermeidung von Unterdruck, Kavitation und Verdampfung.
- 2. Volumenschwankungen des Anlagenwassers infolge von Temperaturschwankungen kompensieren.
- 3. Das Ausgleichen von systembedingten Wasserverlusten in Form einer Wasservorlage.

Wasseraufnahmevolumen eines Druckausdehnungsgefäßes

Die Druckhaltung hat die Aufgabe, Volumenschwankungen zwischen der höchsten und der niedrigsten Systemtemperatur zu kompensieren und dabei den Druck in einem zulässigen Bereich zu halten. Dafür muss ein ausreichendes Wasseraufnahmevolumen bereitgestellt werden, das mindestens dem Ausdehnungsvolumen $V_{\rm e}$ und der Wasservorlage $V_{\rm v}$ entsprechen muss. Werden Geräte installiert, die in Betrieb dem System ein Wasservolumen $V_{\rm D}$ entnehmen und wieder zuführen, wie etwa Vakuumentgaser, dann ist dieses ebenfalls zu berücksichtigen. Das gilt auch für das bei Stillstand entstehende Dampfvolumen $V_{\rm S}$ in Solarkollektoren. Bei Medientemperaturen unter 0 °C oder über 70 °C am Einbindepunkt der Druckhaltung ins Anlagensystem ist ein Vorschaltgefäß zum Schutz der Membran des Ausdehnungsgefäßes zu installieren.



- bei Kühlsystemen Anteil von V gfür t < 0°C

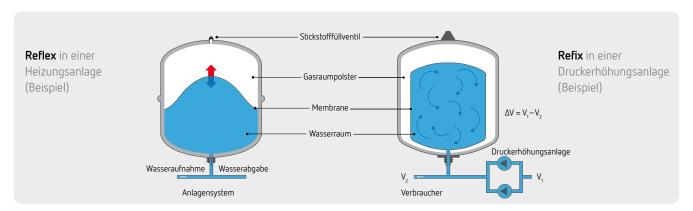
Ausdehnungsvolumenstrom und Drucknullpunkt

Ein Ausgleichsvolumenstrom muss so über die Ausdehnungsleitung zwischen Anlage und Druckhaltung transportiert werden, dass sich die berechneten Drücke der Druckhaltung unverfälscht am Drucknullpunkt abbilden.

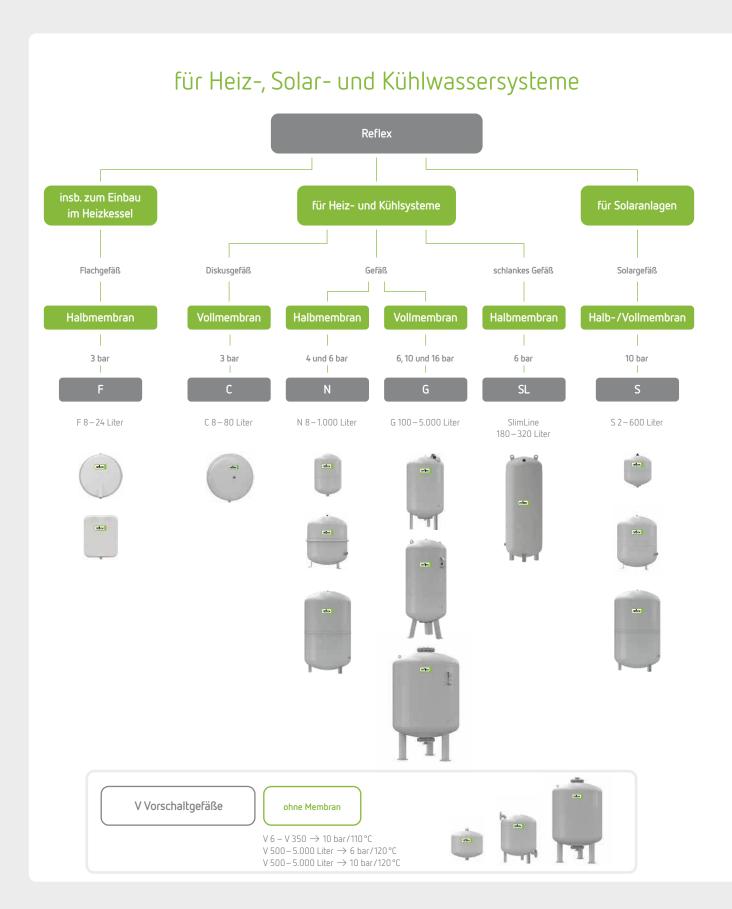
Für geschlossene Heiz-, Solar- und Kühlsysteme wird angenommen, dass der Ausdehnungsvolumenstrom $\mbox{\sc V}_{\!\! {\bf c}}$ der größte anzunehmende Ausgleichsvolumenstrom ist. Er entsteht beim Zu- und Abschalten der Wärmeleistung $\mbox{\sc Q}_{\!\! {\bf c}}$ von Wärme- oder Kälteerzeugern.

Statische Druckhaltesysteme

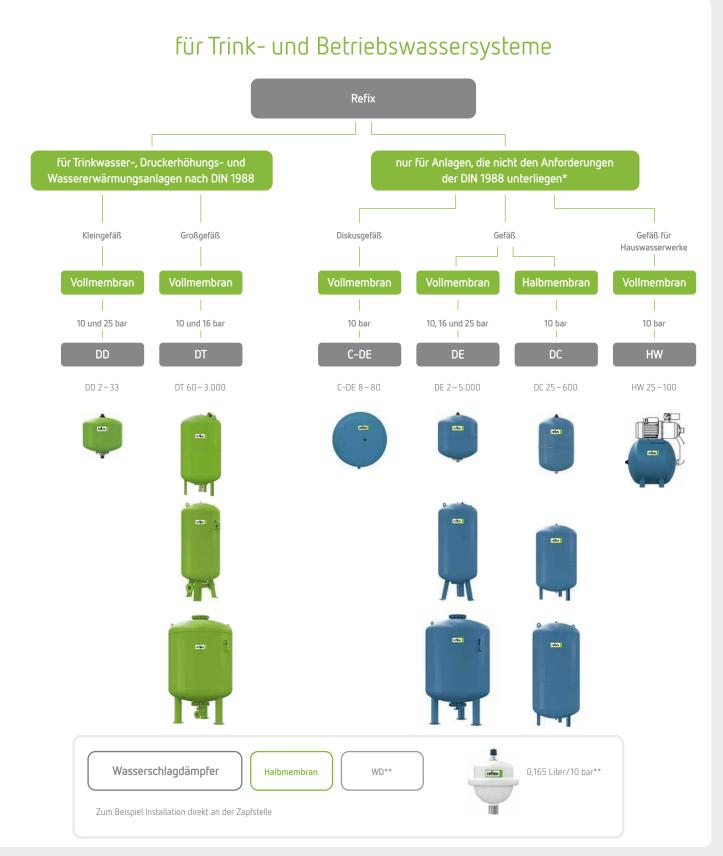
Membran-Druckausdehnungsgefäße arbeiten als Ausdehnungsoder Puffergefäße ohne Strom, Kompressor oder Pumpe. Ausdehnungsgefäße müssen die Volumenschwankungen zwischen der höchsten und der niedrigsten Temperatur kompensieren. Produkte der Serie Reflex werden als Ausdehnungsgefäße in Heiz-, Solarund Kühlwassersystemen eingesetzt, die Produktgruppe Refix zur Einsparung von Trinkwasser in Wassererwärmungsanlagen. Puffer- und Steuergefäße müssen die Differenz zwischen dem geförderten und dem benötigten Volumenstrom zwischenspeichern. Geht es um die Verringerung der Schalthäufigkeit einer Fördereinrichtung, spricht man auch von Steuergefäßen. In der Regel wird die Produktreihe Refix als Puffergefäß in einer Druckerhöhungsanlage eingesetzt, während Produkte der Serie Reflex als Steuergefäße in pumpengesteuerten Druckhaltestationen verwendet werden.


Reflex für geschlossene Heiz-, Solar- und Kühlwassersysteme

Refix für Trink- und Betriebswassersysteme sowie spezielle Anwendungen


Aufbau und Funktionsweisen

Das Druckpolster trägt die Wassersäule der Anlage und wird entsprechend eingestellt, bevor eine Wasserreserve in das Gefäß gefüllt wird. Mit dem Aufheizen des Systems steigt der Druck mit der Folge, dass das Ausdehnungswasser aus dem Anlagensystem in den Wasserraum strömt. Das Druckpolster im Gasraum wird komprimiert und der Druck steigt. Beim Abkühlen erfolgt eine Volumenabnahme und somit ein Druckabfall: Das Ausdehnungswasser strömt aus dem Wasserraum zurück in das Anlagensystem.


Das Druckpolster im Gasraum wird etwas unterhalb des Einschaltdrucks der Fördereinrichtung eingestellt. Bei Unterschreitung des Einschaltdrucks schaltet die Pumpe ein und fördert Wasser. Entnehmen die Verbraucher eine geringere Menge, wird die Differenz im Puffergefäß so lange zwischengespeichert, bis das Druckpolster auf den Ausschaltdruck komprimiert ist und die Druckerhöhungsanlage ausschaltet. Der daraus resultierende Druckabfall führt zu einer Volumenabnahme. Entnehmen die Verbraucher Wasser, wird so lange zwischengespeichertes Wasser aus dem Puffergefäß entnommen, bis das Druckpolster auf den Einschaltdruck entspannt ist und die Druckerhöhungsanlage wieder einschaltet.

Membran-Druckausdehnungsgefäße

Weitere Druckstufen auf Anfrage erhältlich

- $^{\star}~$ Z. B. Feuerlösch- und Betriebswassersysteme, Fußbodenheizungen, Geothermie \dots
- ** Nicht zugelassen für Trinkwasser.

Entscheidende Vorteile

Qualitativ hochwertige Membran-Druckausdehnungsgefäße

- Für geschlossene Heiz- und Kühlwassersysteme sowie Solaranwendungen und Prozesswasser
- Langlebige, verschleißfeste Membrane hält den Druck zuverlässig
- Zulassung gemäß Richtlinie über Druckgeräte 2014/68/EU

Vielfältige Ausführungen

- Unterschiedlichste Druckbereiche und Gefäßvolumen
- Verschiedenste Formen, Typen sowie umfangreiches Zubehör
- Mit Halb- oder Vollmembran
- Langjährige Erfahrung mit kundenspezifischen Sonderlösungen

Schnelle Auslegung und Installation

- Intuitive Auslegungssoftware für die schnelle Auswahl und Berechnung
- Schnelle Installation

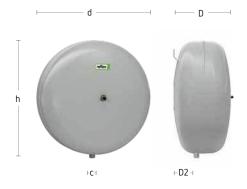
Produktprogramm Reflex

Reflex N

N 8 – 25 I N 35 – 140 I N 200 – 1.000 I

Technische M**erkmale**

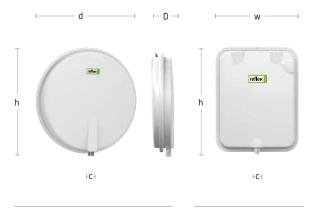
- für geschlossene Heiz- und Kühlsysteme
- mit Gewindeanschlüssen
- ab 35 Liter stehend, bis Baugröße N 80 Wandmontage
- nicht tauschbare Halbmembran nach DIN EN 13831
- zulässige Betriebstemperatur 70°C


- für Frostschutzmittelzusatz mit einer Konzentration von 25 bis 50 %
- Zulassung gem. Richtlinie über Druckgeräte 2014/68/EU
- langlebige Epoxidharzbeschichtung
- mit werkseitig druckbeaufschlagtem Gasraum
- max. zulässige Systemtemperatur 120 °C

Jetzt neu mit **4 bar** anstatt 3 bar maximalen Betriehsdruck!

		Тур	Δrt	-Nr.	VPE	Vordruck	Anschluss	Ø	Höhe	Höhe	Gewicht
		199	AI C.		*** =	VOIGIGER	C	ď	h	h2	Gewiene
	_		grau	weiß	[St.]	[bar]		[mm]		[mm]	[kg]
NE	J!	N 8	8202501	7202801	84	1,5	R 3/4"	272	236	_	1,90
		N 12	8203301	7203501	60	1,5	R 3/4"	272	317	-	2,75
	4 bar 70°C	N 18	8204301	7204401	60	1,5	R 3/4"	308	360	_	3,60
	,,,,	N 25	8206301	7206401	48	1,5	R 3/4"	308	481	-	4,35
		N 35	8208401	7208501	24	1,5	R 3/4"	376	466	130	5,60
		N 50	8209300	7209400	24	1,5	R 3/4"	441	487	175	9,60
		N 80	8210200	7210600	12	1,5	R 1"	512	558	172	13,28
		N 100	8216300	-	10	1,5	R 1"	512	669	172	15,84
		N 140	8211400	_	6	1,5	R 1"	512	890	172	19,90
		N 200	8213300	_	4	1,5	R 1"	634	758	205	23,80
	6 bar	N 250	8214300	_	4	1,5	R 1"	634	888	205	24,70
	70 °C	N 300	8215300	-	1	1,5	R 1"	634	1.092	235	30,00
		N 400	8218000	_	1	1,5	R 1"	740	1.102	245	47,00
		N 500	8218300	_	1	1,5	R 1"	740	1.321	245	52,00
		N 600	8218400	_	1	1,5	R 1"	740	1.531	245	66,00
		N 800	8218500	-	1	1,5	R 1"	740	1.996	245	96,00
		N 1000	8218600	_	1	1,5	R 1"	740	2.413	245	118,00

Reflex C


C 8 - 80I

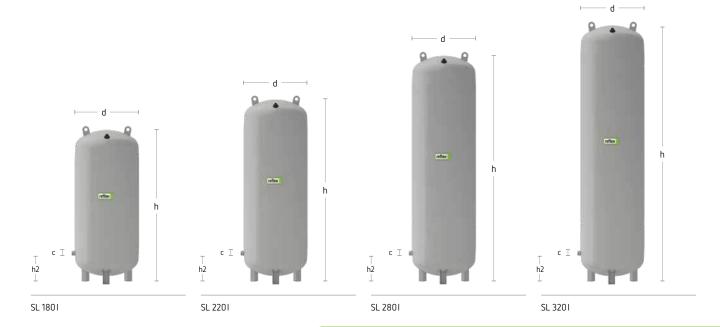
• für geschlossene Heiz- und Kühlsysteme

- mit Gewindeanschlüssen
- inkl. Befestigungslaschen zur einfachen Installation
- nicht tauschbare Vollmembran nach DIN EN 13831
- zulässige Betriebstemperatur 70°C
- für Frostschutzmittelzusatz mit einer Konzentration von 25 bis 50 %
- Zulassung gemäß Richtlinie über Druckgeräte 2014/68/EU
- langlebige Epoxidharzbeschichtung
- mit werkseitig druckbeaufschlagtem Gasraum
- max. zulässige Systemtemperatur 120°C

	Тур	ArtNr.	VPE	Vordruck	Anschluss c	Ø d	Höhe h	Tiefe D	Tiefe D2	Gewicht
		grau	[St.]	[bar]		[mm]		[mm]	[mm]	[kg]
	C 8	8280000	96	1	G 1/2"	280	296	176	52	2,71
	C 12	8280100	60	1	G 1/2"	354	370	182	64	3,60
	C 18	8280200	42	1	G 3/4"	356	370	236	76	4,10
3 bar 70°C	C 25	8280300	42	1	G 3/4"	409	427	253	93	5,10
70 0	C 35	8280400	24	1	G 3/4"	480	465	256	97	6,55
	C 50	8280500	20	1,5	G 3/4"	480	465	332	125	8,00
	C 80	8280600	8	1,5	G 3/4"	634	621	338	135	15,70

Reflex F

F 12 - 241


Technische Merkmale

- Flachformgefäß für geschlossene Heizund Kühlsysteme, insbesondere zum Einbau im Heizkessel
- mit Gewindeanschlüssen
- ab 18 Liter mit Befestigungslasche
- nicht tauschbare Halbmembran nach DIN EN 13831
- zulässige Betriebstemperatur 70 °C
- für Frostschutzmittelzusatz mit einer Konzentration von 25 bis 50 %
- Zulassung gemäß Richtlinie über Druckgeräte 2014/68/EU
- langlebige Epoxidharzbeschichtung
- mit werkseitig druckbeaufschlagtem Gasraum
- max. zulässige Systemtemperatur 120 °C
- Reflex F 8 Gefäß ausgezeichnet mit dem Plus X Award

	Тур	ArtNr.	VPE	Vordruck	Anschluss c		Höhe h	Breite w	Tiefe D	Tiefe D2	Gewicht
		weiß	[St.]	[bar]		[mm]	[mm]	[mm]	[mm]	[mm]	[kg]
	F 8	9600011	54	0,75	G 3/8"	389	389	_	88	72	4,15
	F 12	9600030	36	1	G ½"	-	444	350	108	81	6,60
3 bar 70 °C	F 15	9600040	36	1	G 3/4"	-	444	350	134	97	7,12
70 0	F 18	9600000	28	1	G 3/4"	-	444	350	158	109	7,70
	F 24	9600010	25	1	G 3/4"	_	444	350	180	120	9,10

F 81

Reflex SL

Die Aufstellfläche der Reflex SlimLine Gefäße entsprechen der Aufstellfläche und dem Nutzinhalt des OTTO Expansomats, wodurch ein direkter Austausch möglich ist.

Technische **:rkmale**

- schlankes, platzsparendes Gefäß für geschlossene Heiz- und Kühlsysteme
- nicht tauschbare Halbmembran nach DIN EN 13831
- Vordruck 1,5 bar
- außen beschichtet

- G 1" Anschluss
- zul. Betriebsüberdruck: 6 bar
- zul. Betriebstemperatur: 70 °C
- zul. max. Systemtemperatur: 120 °C
- für Frostschutzmittelzusatz mit einer Konzentration von 25 bis 50 %

	Тур	ArtNr.	VPE	Vordruck	Anschluss c	Ø d	Höhe h	Höhe h2	Gewicht
		grau	[St.]	[bar]		[mm]	[mm]	[mm]	[kg]
	SL 180	8200200	1	1,5	G 1"	480	1.156	214	27,38
6 bar	SL 220	8200250	1	1,5	G 1"	480	1.386	214	33,34
70 °C	SL 280	8200300	1	1,5	G 1"	480	1.716	214	41,82
	SL 320	8200350	1	1,5	G 1"	480	1.946	214	47,78

Reflex G

G 100-500 l G 600-1.000 l G 1.000-5.000 l

Technische **lerkmale**

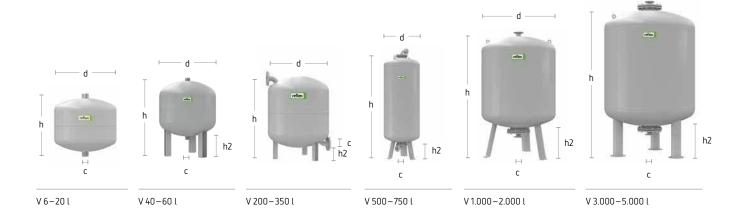
- für geschlossene Heiz- und Kühlsysteme
- stehende Ausführung
- Anschlüsse:
 - → bis 1.000 Liter/Ø 740 mm mit Gewindeanschlüssen
- → ab 1.000 Liter/Ø 1.000 mm mit Flanschanschlüssen DN 65/PN 6 bzw. DN 65/PN 16
- tauschbare Vollmembran nach DIN EN 13831
- zulässige Betriebstemperatur 70°C

- für Frostschutzmittelzusatz mit einer Konzentration von 25 bis 50 %
- Zulassung gemäß Richtlinie über Druckgeräte 2014/68/EU
- mit Muffe für optional erhältlichen Membranbruchmelder (ab 1.000 Liter und Ø 1.000 mm)
- mit Besichtigungsöffnung (ab 1.000 Liter und Ø 1.000 mm)
- Manometer und Vordruckventil durch Bügel geschützt
- langlebige Epoxidharzbeschichtung
- mit werkseitig druckbeaufschlagtem Gasraum
- max. zulässige Systemtemperatur 120°C

	Тур	ArtNr.	VPE	Vordruck	Anschluss c	Ø d	Höhe h	Höhe h2	Gewicht
		grau	[St.]	[bar]		[mm]	[mm]	[mm]	[kg]
G	G 100	8519000	4	3,5	G 1"	480	850	145	19,20
G	G 200	8519100	1	3,5	G 1 1⁄4"	634	967	144	36,50
G	G 300	8519200	1	3,5	G 1 ¼"	634	1.267	144	41,60
G	G 400	8521605	1	3,5	G 1"	740	1.276	146	43,00
G	G 500	8521705	1	3,5	G 1"	740	1.494	146	51,00
G	600	8522605	1	3,5	G 1"	740	1.739	146	66,00
0.001	3 800	8523610	1	3,5	G 1"	740	2.186	149	94,00
70 °C G	G 1000/740	8546605	1	3,5	G 1"	740	2.593	146	150,00
G	G 1000/1000	8524605	1	3,5	DN65/PN6	1.000	1.973	307	228,00
G	G 1500	8526605	1	3,5	DN65/PN6	1.200	1.971	305	280,00
G	G 2000	8527605	1	3,5	DN65/PN6	1.200	2.451	291	300,00
G	G 3000	8544605	1	3,5	DN65/PN6	1.500	2.490	334	620,00
G	G 4000	8529605	1	3,5	DN65/PN6	1.500	3.065	334	770,00
G	G 5000	8530605	1	3,5	DN65/PN6	1.500	3.598	334	849,00
G	G 100	8518000	4	3,5	G 1"	480	850	146	19,20
G	G 200	8518100	1	3,5	G 1 1⁄4"	634	966	144	33,40
G	G 300	8518200	1	3,5	G 1 1⁄4"	634	1.267	144	34,60
G	G 400	8521005	1	3,5	G 1 1⁄4"	740	1.275	133	52,00
G	G 500	8521006	1	3,5	G 1 1/4"	740	1.494	133	60,00
G	G 600	8522006	1	3,5	G 1 ½"	740	1.859	263	118,00
10 bar G	G 800	8523005	1	3,5	G 1 ½"	740	2.324	263	166,00
70 °C G	G 1000/740	8546005	1	3,5	G 1 ½"	740	2.648	263	190,00
G	G 1000/1000	8524005	1	3,5	DN65/PN16	1.000	2.001	286	335,00
G	G 1500	8526005	1	3,5	DN65/PN16	1.200	1.991	291	390,00
G	G 2000	8527005	1	3,5	DN65/PN16	1.200	2.451	291	485,00
G	3000	8544005	1	3,5	DN65/PN16	1.500	2.542	320	830,00
G	G 4000	8529005	1	3,5	DN65/PN16	1.500	3.117	320	1.064,00
G	G 5000	8530005	1	3,5	DN65/PN16	1.500	3.652	320	1.274,00
G	G 100	8518400	1	3,5	DN25/PN16	480	992	231	25,00
G	G 200	8518500	1	3,5	DN25/PN16	634	1.088	221	57,00
G	G 300	8518600	1	3,5	DN25/PN16	634	1.392	221	66,00
G	G 400	8510206	1	3,5	DN40/PN16	740	1.373	198	118,00
G	G 500	8518700	1	3,5	DN40/PN16	740	1.618	197	130,00
G	G 600	8522007	1	3,5	DN40/PN16	740	1.871	198	158,00
16 bar G	G 800	8523906	1	3,5	DN40/PN16	740	2.336	198	221,00
70 °C G	G 1000/740	8546906	1	3,5	DN40/PN16	740	2.804	201	260,00
G	G 1000/1000	8524205	1	3,5	DN65/PN16	1.000	2.031	276	468,00
G	G 1500	8526305	1	3,5	DN65/PN16	1.200	2.021	281	650,00
G	G 2000	8527100	1	3,5	DN65/PN16	1.200	2.481	281	731,00
G	3000	8544705	1	3,5	DN65/PN16	1.500	2.550	310	960,00
G	G 4000	8529405	1	3,5	DN65/PN16	1.500	3.110	310	890,00
G	G 5000	8529705	1	3,5	DN65/PN16	1.500	3.645	310	1.020,00

Reflex S

S 2 – 33 l S 50 – 250 l S 300 – 600 l


Technische **1erkmale**

- für Solar-, Heiz- und Kühlsysteme
- mit Gewindeanschlüssen
- bis 33 Liter mit Befestigungslaschen, ab 50 Liter mit Füßen
- für Frostschutzmittelzusatz mit einer Konzentration von 25 bis 50 %
- nicht tauschbare Vollmembran bis 33 Liter, nicht tauschbare Halbmembran 50–600 Liter

- zulässige Betriebstemperatur 70°C
- Zulassung gemäß Richtlinie über Druckgeräte 2014/68/EU
- langlebige Epoxidharzbeschichtung
- mit werkseitig druckbeaufschlagtem Gasraum
- max. zulässige Systemtemperatur 120°C

	Тур	Art	-Nr.	VPE	Vordruck	Anschluss c	Ø d	Höhe h	Höhe h2	Gewicht
		grau		[St.]	[bar]				[mm]	[kg]
	S 2	8707700	_	280	0,5	G ³ /4"	132	260	_	0,98
	S 8	8703900	9702600	96	1,5	G 3/4"	206	332	-	1,80
	S 12	8704000	9702700	60	1,5	G 3/4"	280	300	_	2,16
	S 18	8704100	9702800	56	1,5	G 3/4"	280	409	-	2,95
	S 25	8704200	9702900	42	1,5	G 3/4"	280	518	_	3,68
	S 33	8706200	9706300	24	1,5	G 3/4"	354	455	-	4,80
	S 50	8209500	_	20	3	R 3/4"	415	469	158	8,06
10 bar	S 80	8210300	_	12	3	R 1"	486	562	166	12,10
70 °C	S 100	8210500	_	10	3	R 1"	486	667	165	12,90
	S 140	8211500	_	6	3	R 1"	486	886	172	19,05
	S 200	8213400	_	1	3	R 1"	640	758	205	27,50
	S 250	8214400	_	1	3	R 1"	640	888	205	32,40
	S 300	8215400	_	1	3	R 1"	640	1.092	235	47,00
	S 400	8219000	_	1	3	R 1"	746	1.102	245	61,00
	S 500	8219100	_	1	3	R 1"	746	1.321	245	72,00
	S 600	8219200	-	1	3	R 1"	746	1.559	245	87,00

Reflex V

lechnische **1erkmale**

- Vorschaltgefäße
- bis 20 Liter mit Befestigungslaschen, ab 40 Liter mit Füßen
- ohne Membran
- erforderlich bei Anlagen mit Rücklauftemperaturen > 70°C oder in Kälteanlagen mit Temperaturen < 0°C
- Zulassung gemäß Richtlinie über Druckgeräte 2014/68/EU
- Einsatz auch als Pufferspeicher möglich
- Sonderbehälter > 10 bar/> 120 °C auf Anfrage
- langlebige Epoxidharzbeschichtung
- max. zulässige Systemtemperatur 110 °C bzw. 120 °C (je nach Ausführung und Größe)

	Тур	ArtNr.	VPE	Anschluss c	Ø d	Höhe h	Höhe h2	Gewicht
		grau	[St.]				[mm]	[kg]
	V 500	8852800	1	DN40/PN6	750	1.717	208	160,00
	V 750	8851800	1	DN40/PN6	750	2.323	208	205,00
	V 1000	8851905	1	DN65/PN6	1.000	2.020	305	310,00
6 bar	V 1500	8852305	1	DN65/PN6	1.200	2.020	305	445,00
120°C	V 2000	8852405	1	DN65/PN6	1.200	2.478	305	545,00
	V 3000	8852505	1	DN65/PN6	1.500	2.556	337	775,00
	V 4000	8853405	1	DN65/PN6	1.500	3.131	337	1.060,00
	V 5000	8854805	1	DN65/PN6	1.500	3.666	337	1.095,00
	V 6	8303100	96	R 3/4"	206	244	_	2,00
	V 12	8303200	72	R 3/4"	280	244	_	3,30
	V 20	8303300	42	R 3/4"	280	360	_	3,30
10 bar	V 40	8303400	18	R 1"	409	562	113	9,75
110°C	V 60	8303500	12	R 1"	409	732	172	12,40
	V 200	8303600	1	DN40/PN16	634	901	142	35,25
	V 300	8303700	1	DN40/PN16	634	1.201	142	48,00
	V 350	8303800	1	DN40/PN16	634	1.341	142	51,00
	V 500	8400105	1	DN40/PN16	750	1.644	208	290,00
	V 750	8400155	1	DN40/PN16	750	2.258	197	420,00
	V 1000	8400205	1	DN65/PN16	1.000	2.055	286	560,00
10 bar	V 1500	8400305	1	DN65/PN16	1.200	2.045	284	780,00
120°C	V 2000	8400405	1	DN65/PN16	1.200	2.505	284	940,00
	V 3000	8400505	1	DN65/PN16	1.500	2.600	313	1.405,00
	V 4000	8400605	1	DN65/PN16	1.500	3.178	313	1.930,00
	V 5000	8400705	1	DN65/PN16	1.500	3.713	313	2.015,00

Zubehör Reflex

Gesicherte Absperrungen

Gemäß der DIN EN 12828 muss "der Wasserraum von Ausdehnungsgefäßen … entleerbar sein. Alle Ausdehnungsgefäße sind gegenüber der Heizungsanlage absperrbar anzuordnen."

Wir empfehlen für Standardanlagen:

- bei MAG mit Gewindeanschlüssen R ³/₄ und
 R 1 das Reflex Kappenventil in der Dimension des MAG
- bei MAG mit Flanschanschlüssen in der Dimension der Ausdehnungsleitung (Auswahl siehe Seite 21)

Reflex Kappenventil

- gesicherte Absperrung für die Wartung und Demontage von Ausdehnungsgefäßen
- mit Entleerung
- nach DIN EN 12828
- PN 10/120°C
- ab Baugröße N/S/G 80 ist die 1" Anschlussgröße zu wählen

AG Anschlussgruppe

- für die besonders schnelle Montage und Wartung von MAGs (empfohlen für die Baureihe G)
- inkl. gesicherter Absperrung und Anschlussbogen mit Verschraubung
- mit Entleerungshahn G ½" und Schlauchtülle
- nach DIN EN 12828
- PN 16/120 °C

Wandhalterungen

Wandhalterung als Rohrkonsole

- Konsole mit Mehrfachanschlüssen für Reflex 8–25 Liter
- mit Gefäßanschluss nach oben
- 10 bar

Wandhalterung mit Spannband

 Konsole mit Spannband für Reflex 8 – 25 Liter, vertikale Montage

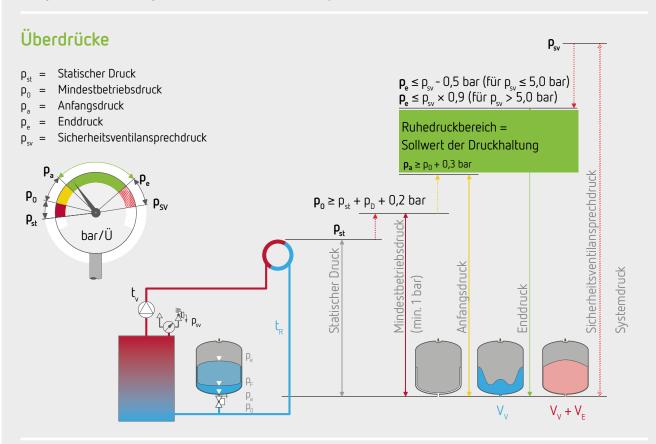
Membranbruchmelder

- Signalisierung bei Membranbruch in Reflex Gefäßen
- bestehend aus einem Elektrodenrelais und einer Elektrode (werkseitig montiert)
- Spannungsversorgung 230 V/50 Hz
- potenzialfreier Ausgang (Wechsler)
- Lieferung nur in Verbindung mit einem Gefäß mit MBM-Muffe

Vordruckprüfgerät

DIN EN 12828: "Ausdehnungsgefäße sind jährlich zu warten. Dabei ist mit einer Armatur im wasserlosen Zustand der Gasvordruck ρ_n zu überprüfen und ggf. zu korrigieren."

Vordruckprüfgerät bis ca. 9 bar



Тур	ArtNr.	Gewicht [kg]
Anschlussgruppe AG 1"	9119204	0,85
Anschlussgruppe AG 1 ¼"	9119205	1,00
Anschlussgruppe AG 1 1/2"	9119206	1,15
Vordruckprüfgerät	9119198	0,06
Membranbruchmelder MBM II	7857700	0,62
Kappenventil SU R ¾" x ¾"	7613000	0,26
Kappenventil SU R 1" x 1"	7613100	0,57
Wandhalterung mit Spannband	7611000	0,22
Wandhalterung als Rohrkonsole	7612000	0,90

Auswahl und Berechnung

Drücke im System

Gültig bei Vordruckhaltung in Heiz-, Kühl- und Solarthermiesystemen

Berechnungsgrößen

Drücke werden als Überdrücke angegeben und beziehen sich auf den Anschlussstutzen des Membran-Druckausdehnungsgefäßes bis zum höchsten Punkt der Anlage

Reflex-Empfehlungen

- Sicherheitsventilansprechdruck ausreichend hoch wählen: $p_{sv} \ge p_0 + 1,5$ bar
- Wenn möglich, bei der Berechnung des Gasvordrucks einen Zuschlag von 0,2 bar wählen: $p_0 \ge \frac{H[m]}{10} + 0,2$ bar
- Wegen des erforderlichen Zulaufdrucks für die Umwälzpumpen auch bei Dachzentralen mindestens 1 bar Vordruck wählen: p_n ≥ 1 bar
- Den wasserseitigen Füll- bzw. Anfangsdruck bei entlüfteter Anlage im kalten Zustand mindestens 0,3 bar über dem Vordruck einstellen, um eine Wasservorlage im Membran-Druckausdehnungsgefäß zu gewährleisten (V_v = 0,005 × V_A mindestens 3 I für V_v > 15 I Mindestvorlagevolumen It. Norm): p_e ≥ p_o + 0,3 bar

Schnellauswahltabelle Reflex

Heizungsanlagen:	70/50°C	Markie	rung zeigl	t Auswah	l für Refl	ex S an –	übrige Ta	belle: Aus	wahl für	Reflex N					
Sicherheitsventil P sv	bar		2,5		V _n		3	.0		V _n		4,	,0		V _n
Vordruck p ₀	bar	0,5	1,0	1,5	Liter	0,5	1,0	1,5	1,8	Liter	1,5	2,0	2,5	3,0	Liter
Inhalt V _A	Liter	107	48	-	8	133	82	31	-	8	87	48	8	-	8
		161	71		12	199	122	46		12	131	71	12	-	12
		268	134		18	325	210	96	27	18	223	134	45	-	18
		424	238	52	25	504	344	185	89	25	362	238	114	-	25
		639	387	126	35	730	536	313	179	35	561	387	213	-	35
		912	608	238	50	1.043	782	504	313	50	811	608	362	114	50
		1.460	973	461	80	1.668	1.251	834	580	80	1.298	973	649	263	80
		1.825	1.217	608	100	2.086	1.564	1.043	730	100	1.622	1.217	811	362	100
		2.555	1.703	852	140	2.920	2.190	1.460	1.022	140	2.271	1.703	1.135	561	140
		3.650	2.433	1.217	200	4.171	3.128	2.086	1.460	200	3.244	2.433	1.622	811	200
		4.562	3.041	1.521	250	5.214	3.910	2.607	1.825	250	4.055	3.041	2.028	1.014	250
		5.474	3.650	1.825	300	6.257	4.692	3.128	2.190	300	4.866	3.650	2.433	1.217	300
		7.299	4.866	2.433	400	8.342	6.257	4.171	2.920	400	6.488	4.866	3.244	1.622	400
		9.124	6.083	3.041	500	10.428	7.821	5.214	3.650	500	8.110	6.083	4.055	2.028	500
		10.949	7.299	3.650	600	12.513	9.385	6.257	4.380	600	9.732	7.299	4.866	2.433	600
		14.599	9.732	4.866	800	16.684	12.513	8.342	5.839	800	12.976	9.732	6.488	3.244	800
		18.248	12.165	6.083	1.000	20.855	15.641	10.428	7.299	1.000	16.221	12.165	8.110	4.055	1.000

Maßgeschneidert planen mit der neuen Auslegungssoftware

Reflex Solutions Pro rsp.reflex.de

Wasserinhalt (nährungsweise)

Radiatoren: $V_A = Q[kW] \times 13,5 \text{ I/kW}$

Plattenheizkörper: $V_{\Delta} = \dot{Q}[kW] \times 8.5 \text{ I/kW}$

Auswahlbeispiel

 $p_{SV} = 3 \text{ bar}$ H = 13 m $Q = 40 \text{ kW (Platten } 90/70^{\circ}\text{C)}$

 $V_{PH} = 1.000 I (V Pufferspeicher)$

berechnen:

 \rightarrow V_A = 40 kW × 8,5 I/kW + 1.000 = 1.340 I

 $p_0 \ge (\frac{13}{10} + 0.2 \text{ bar}) = 1.5 \text{ bar}$

Ergebnis Tabelle

 $\rho_{SV} = 3 \text{ bar}$ $\rho_0 = 1,5 \text{ bar}$ $V_A = 1.411 \text{ I}$ $V_D = 200 \text{ I}$

(für V_A max. 1.360)

gewählt:

1× Reflex N 200, 6 bar → Seite 11

1× Kappenventil → Seite 18

Heizungsanlagen:	70/50°C	Markieru	ıng zeigt Au	ıswahl für	Reflex S ar	ı – übrige T	abelle: Aus	swahl für R	eflex N				
Sicherheitsventil P sv	bar		5,0				V _n		6	,0			
Vordruck p ₀	bar	2,0	2,5	3,0	3,5	4,0	Liter	2,0	2,5	3,0	3,5	4,0	5,0
Inhalt V _A	Liter	91	58	26	_	-	8	118	90	63	35		-
		136	88	39		-	12	177	136	94	52	10	
		231	158	85	12	-	18	293	230	167	105	42	-
		373	272	170	69	-	25	459	372	285	197		-
		576	434	292	150	8	33	679	574	452	330	208	-
		829	664	475	272	69	50	969	827	684	529	354	6
		1.327	1.062	796	515	191	80	1.551	1.323	1.095	867	639	89
		1.659	1.327	995	664	272	100	1.939	1.654	1.369	1.083	798	145
		2.322	1.858	1.393	929	434	140	2.714	2.315	1.916	1.517	1.118	257
		3.318	2.654	1.991	1.327	664	200	3.878	3.307	2.737	2.167	1.597	424
		4.147	3.318	2.488	1.659	829	250	4.847	4.134	3.422	2.709	1.996	564
		4.977	3.981	2.986	1.991	995	300	5.817	4.961	4.106	3.250	2.395	684
		6.636	5.309	3.981	2.654	1.327	400	7.755	6.615	5.474	4.334	3.193	912
		8.295	6.636	4.977	3.318	1.659	500	9.694	8.269	6.843	5.417	3.992	1.141
		9.954	7.963	5.972	3.981	1.991	600	11.633	9.922	8.212	6.501	4.790	1.369
		13.271	10.617	7.963	5.309	2.654	800	15.511	13.230	10.949	8.668	6.387	1.825
		16.589	13.271	9.954	6.636	3.318	1.000	19.389	16.537	13.686	10.835	7.984	2.281

Sonderausführungen auf Anfrage: Sonderbehälter > 5.000 Liter; Sonderbehälter > 10 bar

Auswahl Ausdehnungsleitungen

Ausdehnungsleitungen sind nach den nationalen Vorschriften zu dimensionieren und zu installieren. Die DIN EN 12828 fordert, dass jeder Wärmeerzeuger durch mindestens eine Ausdehnungsleitung mit einem oder mehreren Ausdehnungsgefäßen verbunden ist. Auf Frostfreiheit ist unbedingt zu achten.

Ausdehnungsleitungen	DN 25 1"	DN 32 11/4"	DN 40 1½"	DN 50 2"	DN 65	DN 80	DN 100
Q∕kW Länge ≤ 10 m	2.100	3.600	4.800	7.500	14.000	19.000	29.000
Q/kW Länge > 10 m ≤ 30 m	1.400	2.500	3.200	5.000	9.500	13.000	20.000

Wir empfehlen bei einer Länge der Ausdehnungsleitung > 10 m die Nennweite um eine Dimension größer zu wählen.

Ausführliche Berechnung und Planungshinweise

Vor der Auswahl der Produkte sind zunächst die wichtigsten Daten der Anlage bezüglich Temperaturen, Drücke und Wasserinhalt zu erfassen und daraus die Parameter für die Auswahl der Produkte zu berechnen:

Wasserinhalt	V _A
Wärmeleistung	\dot{Q}_{ges}
Ausdehnungsvolumenstrom	V _e
Wasseraufnahmevolumen	V _o
Sicherheitsventilansprechdruck	P _{sv}
Mindestbetriebsdruck	P_0
Enddruck	P _E

Die benötigten Basisdaten sind vorzugsweise den Planungsunterlagen/Herstellerdaten zu entnehmen. Sind diese nicht verfügbar, müssen die Daten vor Ort aufgenommen oder näherungsweise ermittelt werden. Hilfsgrößen zur Berechnung und näherungsweisen Ermittlung von Wasserinhalten sind in den Tabellen zusammengestellt. Auch die extremen Anforderungen der industriellen Wärmeversorgung und Fernwärmeversorgung können dank des Variomat Giga bedient werden.

Hilfsgrößen zur Berechnung

Ausdehnungskoeffizient n bei Frostschutzmittelzusätzen* z

z	t _{max} °C	30	40	50	60	70	80	90	100	105	110	120	130	140	150
0%	- 0/	0,37	0,72	1,15	1,66	2,24	2,88	3,58	4,34	4,74	5,15	6,03	6,96	7,96	9,03
34%	n %	1,49	1,99	2,53	3,11	3,71	4,35	5,01	5,68	-	6,39	7,11	7,85	8,62	9,41

Werte gelten für Antifrogen N. Wir empfehlen eine Konzentration von 25 bis 50 %. Bei geringen Dosierungen besteht Korrosionsgefahr!

Verdampfungsdruck** $p_{_{D}}$ bei Frostschutzmittelzusätzen* z

z	t _{max} °C	30	40	50	60	70	80	90	100	105	110	120	130	140	150
0%		-0,96	-0,93	-0,88	-0,80	-0,69	-0,53	-0,3	0,01	0,21	0,43	0,98	1,7	2,61	3,76
34%	p _D bar			-0,90	-0,80	-0,70	-0,60	-0,40	-0,10	-	0,23	0,70	1,33	2,13	3,15

Werte gelten für Antifrogen N. Wir empfehlen eine Konzentration von 25 bis 50 %. Bei geringen Dosierungen besteht Korrosionsgefahr!

Richtwerte für Dimensionen von Ausdehnungsleitungen, Nachspeiseleitungen und Leitungen zu Steuergefäßen

DN		20	25	32	40	50	65	80	100
, , , , ,	1	630	1.040	1.830	2.410	3.700	6.960	9.450	14.130
V I/h	2	2.500	4.150	7.300	9.600	14.800	27.800	37.800	56.500

 p_n bezogen auf ± 0 m NN, je 1 km Höhe empfehlen wir einen Zuschlag von 0,1 bar.

V zulässiger Volumenstrom:
 1 bei einer Leitungslänge bis max. 30 m
 2 bei einer Leitungslänge bis 1 m und an Reduzierungen z. B. an Gefäßanschlüssen. Nicht zulässig bei druckgesteuerten Geräten zwischen Drucksensoren und Anlage

Näherungsweise Ermittlung des Wasserinhalts von Wärmeerzeugern

Der Wasserinhalt V_w wird aus dem spezifischen Wasserinhalt v_w und der Nennleistung des Wärmeerzeugers \dot{Q}_w bei Solarkollektoren aus der installierten Kollektorfläche A_g berechnet.

Konventionelle Wärmeerzeuger	v _w I/kW	
Gusskessel mit atmosphärischem Brenner	1,10	
Gusskessel mit Gebläsebrenner	1,40	
Stahlkessel mit Gebläsebrenner	1,80	
Festbrennstoffkessel	2,00	$V_w = v_w * \dot{Q}_w$
Brennwertkessel wandhängend	0,15	ν _w = ν _w
Wärmeübertrager	0,60	
BHKW	0,60	
Wärmepumpe	0,60	
Solarkollektoren	v _K 1/m2	
Flachkollektor	2,0	
Vakuumröhre direkt	1,0	$V_{K} = V_{K}^{*}A_{G}$
Vakuumröhre heat-pipe	3,0	

Näherungsweise Ermittlung des Wasserinhalts von Heizflächen und Verteilungsleitungen

Der Wasserinhalt V_A wird aus dem spezifischen Wasserinhalt v_A und der installierten Leistung des Wärmeverbrauchers \dot{Q}_{ges} ermittelt. Enthalten sind der Wasserinhalt der Heizflächen, der Verteilungsleitungen und der Rohrleitungen in der Heizzentrale. Fernleitungen zwischen der Heizzentrale und dem Heizsystem sind gesondert zu berücksichtigen.

Heizflächenart	t _{max C} t _R °C	90 70	70 55	70 50	55 45	45 35	35 30	
Glieder		11,5	17,6	18,1	27,7	44,6	83,3	
Röhren		15	23,2	24,1	36,3	59,3	111,5	
Platten	v, I/kW	6,5	9,6	9,4	14,9	21,9	41,0	V _A =
Konvektoren	V _A 17 KW	4	5,9	5,4	9,4	13,4	27,1	$V_A * \dot{Q}_{celk.}$
Lüftung		3,3	4,7	4,1	7,4	9,8	19,7	
Fußbodenheizung		-	_	-	_	21,1	35,6	

Volumen von Vakuum-Sprührohrentgasern $\mathbf{V}_{_{\mathrm{D}}}$, das von der Druckhaltung aufgenommen werden muss

Entgasung	V _D I
Servitec 2530	1
Servitec 35120	6
Sonder Servitec – 24	35
Sonder Servitec – 68	70

Spezifischer Wasserinhalt $V_{\scriptscriptstyle p}$ von Rohrleitungen

Der Wasserinhalt V_p wird aus dem spezifischen Wasserinhalt v_p und der installierten Rohrleitungslänge L ermittelt. Beispiel Stahlrohrleitungen

DN	25	32	40	50	60	65	80	100	125	150	200
v _p I/m	0,58	1,01	1,34	2,1	3,2	3,9	5,3	7,9	12,3	17,1	34,2

Beispiel Kunststoffrohrleitungen (PE-X Rohre)

Тур	20 × 2	25 × 2,3	32 × 2,9	40 × 3,7	50 × 4,6	63 × 5,8	75 × 6,8	90 × 8,2	110 × 10
d _i in mm	16	20	26	33	41	51	61	74	90
v _p I/m	0,20	0,33	0,54	0,83	1,31	2,07	2,96	4,25	6,36

MAGs in Heizungsanlagen

Berechnung

Nach DIN 4807 T2 und DIN EN 12828.

Schaltung

Meist als Saugdruckhaltung (siehe Skizze Seite 30) mit Umwälzpumpe im Vorlauf und Ausdehnungsgefäß im Rücklauf, also saugseitig nach der Umwälzpumpe.

Stoffwerte n, p_D

In der Regel Stoffwerte für reines Wasser ohne Frostschutzzusätze.

Ausdehnungsvolumen V., höchste Temperatur t_{тр}

Ermittlung der prozentualen Ausdehnung in der Regel zwischen tiefster Temperatur = Fülltemperatur = 10 °C und höchster Sollwerteinstellung des Temperaturreglers $t_{\rm re}$.

Mindestbetriebsdruck p_n

Insbesondere bei Flachbauten und Dachzentralen ist aufgrund des geringen statischen Drucks p_{st} der Mindestzulaufdruck für die Umwälzpumpe entsprechend den Herstellerangaben nachzuweisen. Auch bei geringeren statischen Höhen empfehlen wir deshalb, den Mindestbetriebsdruck p_n nicht unter 1 bar zu wählen.

Hinweis: Vorsicht bei Dachzentralen und Flachbauten Reflex-Empfehlung: $p_0 \ge 1$ bar

Fülldruck p, Anfangsdruck p

Da die Fülltemperatur mit 10 °C in der Regel gleich der tiefsten Systemtemperatur ist, gilt für MAG Fülldruck = Anfangsdruck. Bei Druckhaltestationen ist darauf zu achten, dass Füll- und Nachspeiseeinrichtungen unter Umständen gegen den Enddruck fahren müssen. Dies trifft nur bei Reflexomat zu.

Bei korrosionsgefährdeten Anlagen Refix einsetzen! Bei Anlagen mit sauerstoffreichem Wasser (z. B. Erd-wärmeanlagen oder Fußbodenheizungen mit nicht diffusionsdichten Rohren) wird bis 70 °C Refix D, Refix DE oder Refix C eingesetzt, da alle wasserführenden Refix-Teile korrosionsgeschützt sind

Um einen dauerhaft sicheren automatischen Betrieb in Kühlwassersystemen zu erreichen ist es sinnvoll, die Druckhalteeinrichtungen mit Nachspeisesystemen auszurüsten und durch Servitec Entgasungssysteme zu ergänzen. Dies ist bei Kühlwassersystemen besonders wichtig, da auf thermische Entlüftungseffekte gänzlich verzichtet werden muss.

Druckhaltung

Als statische Druckhaltung mit Reflex N, F, S, G auch in Kombination mit Nachspeise- und Entgasungssystemen oder als Variomat Druckhaltestation zum Druckhalten, Entgasen und Nachspeisen oder als Reflexomat kompressorgesteuerte Druckhaltestation.

Entgasung, Entlüftung, Nachspeisung

Um einen dauerhaft sicheren, automatischen Betrieb der Heizungsanlage zu erreichen, ist es sinnvoll, die Druckhalteeinrichtungen mit Nachspeisesystemen auszurüsten und durch Servitec Entgasungssysteme zu ergänzen.

Vorschaltgefäße

Bei permanenter Überschreitung einer Temperatur von 70°C an der Druckhaltung muss zum Schutz der Membrane im Ausdehnungsgefäß ein Vorschaltgefäß installiert werden.

Einzelabsicherung

Jeder Wärmeerzeuger muss nach DIN EN 12828 mit mindestens einem Ausdehnungsgefäß verbunden sein. Nur gesicherte Absperrungen (gegen unbeabsichtigtes Schließen) sind zulässig. Wird ein Wärmeerzeuger hydraulisch abgesperrt (z. B. Kesselfolgeschaltung), so muss trotzdem die Verbindung zu einem Ausdehnungsgefäß gewährleistet bleiben.

Bei Mehrkesselanlagen wird deshalb meistens jeder Kessel mit einem eigenen Ausdehnungsgefäß abgesichert. Dieses wird nur für den jeweiligen Kesselwasserinhalt berechnet.

Aufgrund der guten Entgasungsleistung von Variomat Druckhaltestationen empfiehlt es sich, zur Minimierung der Schalthäufigkeit hier auch bei Einkesselanlagen ein Membran-Druckausdehnungsgefäß (z. B. Reflex N) am Wärmeerzeuger zu installieren.

Berechnung für Membran-Druckausdehnungsgefäße in Heizungsanlagen

Schaltung: Vordruckhaltung, MAG im Rücklauf, Umwälzpumpe im Vorlauf, bei Nachdruckhaltung.

Ausgangsdaten			siehe Herstellerangaben/Hilfsgrößen zur Berechnung	
Wärmeerzeuger Wärmeleistung Wasserinhalt	Q _w V _w	[k _w] [I]	Summe aller Wärmeerzeuger	Q๋ _{ges} = k _w
Auslegungs- vorlauftemperatur rücklauftemperatur Wasserinhalt	t_{v} t_{R} V_{A}	[°C] [°C] [I]	Bei t _R > 70 °C Vorschaltgefäß vorsehen!	V _A = Liter
Höchste Sollwerteinstellung Temperaturregler Frostschutzmittelzusatz Sicherheitstemperaturbegrenzer		[°C] [%] [°C]	Prozentuale Ausdehnung n (bei Frostschutzmittelzusatz n^*) Verdampfungsdruck p_n bei > 100 °C (bei Frostschutzmittelzusatz p_n^*)	n =% p _p = bar
Statischer Druckp _{st}	[ba			p _{st} = bar
Druckberechnung	i			. 31
Vordruck	P ₀	[bar]	$p_0 = p_{st} + p_D + 0.2$ bar (Sicherheitszuschlag) Reflex Empfehlung: $p_0 \ge 1.0$ bar Erf. Zulaufdruck der Umwälzpumpen (NPSH-Wert) lt. Herstellerangaben und Einhaltung des zul. Betriebsdrucks prüfen!	p _o = bar
Sicherheitsventilansprechdruck	P _{SV}	[bar]	Reflex Empfehlung: für $p_{sv} \le 5$ bar: $p_{sv} \ge p_0 + 1,5$ bar für $p_{sv} > 5$ bar: $p_{sv} \ge p_0 + 2,0$ bar	p _{sv} = bar
Enddruck	P _e	[bar]	$p_e \le p_{SV}$ – Schließdruckdifferenz für $p_{SV} \le 5$ bar: $p_e \le p_{SV}$ – 0,5 bar für $p_{SV} > 5$ bar: $p_e \le p_{SV}$ – 0,1 × p_{SV}	p _e = bar
Ausdehnungsgefäß				
Ausdehnungsvolumen	V _e	[۱]	$V_e = \frac{n}{100} \times V_A$	V _e = Liter
Wasservorlage	V_{v}	[۱]	$V_v = 0.005 \times V_A$ mindestens 3 l für $V_n > 15$ l Mindestvorlagevolumen lt. Norm	V _v = Liter
Nennvolumen	V _n	[1]	$\begin{split} &\text{für V}_n > 15 \text{ I: V}_n = \left(V_e + V_v + V_D^* \right) \times \frac{p_e + 1}{p_e - p_o} \\ &\text{für V}_n \leq 15 \text{ I: Wasservorlage} V_v \geq 0, 2 \times V_n \\ &V_n = \left(V_e + V_v + V_D^* \right) \times \frac{p_e + 1}{p_e - p_o} \\ &\text{Hinweis: Der Druckfaktor dient der vereinfachten Berechnung des Nennvolumens,} \\ &\text{welches um den Druckfaktor größer ist als die Wasservorlage + Ausdehnungsvolumen.} \end{split}$	V _n = Liter
Kontrolle Anfangsdruck	P _a	[bar]	$\begin{aligned} p_{a} &= \frac{p_{e}+1}{1+ & \frac{(V_{e}+V_{o})^{2}(p_{e}+1)(n+n_{g})}{V_{n}(p_{o}+1)2n}} - 1 \text{ bar} \\ &\text{Bedingung: } p_{a} \geq p_{o} + 0,250,3 \text{ bar,} \\ &\text{ansonsten Berechnung für größeres Nennvolumen} \end{aligned}$	p _a = bar
Ergebnis				
Reflex / bar Liter			p _o = bar Vor Inbetriebnahme prüfen!	
			p _a = bar Einstellung Nachspeisung prüfen!	
			p _e = bar	

^{*} Gilt nur bei Einsatz von Reflex Servitec gem. Tabelle "Entgasung" 🛄 auf Seite 23.

MAGs in Kühlwassersystemen

Die Berechnung erfolgt in Anlehnung an DIN EN 12828 und DIN 4807 T2.

Stoffwerte n*

Frostschutzmittelzusätze (Empfehlung: 25 – 50 % Konzentration), entsprechend der tiefsten Systemtemperatur, sind bei der Festlegung der prozentualen Ausdehnung n* gemäß den Herstellerangaben zu berücksichtigen.

Ausdehnungsvolumen V

Ermittlung der prozentualen Ausdehnung n^* in der Regel zwischen der tiefsten Systemtemperatur (z. B. Stillstand im Winter -20 °C) und der höchsten Systemtemperatur (z. B. Stillstand im Sommer +40 °C).

Mindestbetriebsdruck (Vordruck) p.

Da keine Temperaturen > 100 °C gefahren werden, sind besondere Zuschläge entbehrlich.

Fülldruck p., Anfangsdruck p.

Häufig liegt die tiefste Systemtemperatur unter der Fülltemperatur, so dass der Fülldruck über dem Anfangsdruck liegt.

Druckhaltung

In der Regel als statische Druckhaltung mit Reflex, auch in Kombination mit Nachspeise- und Entgasungsstationen Control und Servitec.

Entgasung, Entlüftung, Nachspeisung

Um einen dauerhaft sicheren automatischen Betrieb in Kühlwassersystemen zu erreichen, ist es sinnvoll, die Druckhalte-einrichtungen mit Nachspeisesystemen auszurüsten und durch Servitec Vakuum-Sprührohrentgasung zu ergänzen. Dies ist bei Kühlwassersystemen besonders wichtig, da auf thermische Entlüftungseffekte gänzlich verzichtet werden muss.

Vorschaltgefäße

Die Membranen von Reflex sind zwar bis etwa $-20\,^{\circ}$ C und die Gefäße bis $-10\,^{\circ}$ C geeignet, jedoch ist das "Festfrieren" der Membran am Behälter nicht auszuschließen. Wir empfehlen deshalb den Einbau eines Vorschaltgefäßes in den Rücklauf zur Kältemaschine bei Temperaturen $\leq 0\,^{\circ}$ C.

Einzelabsicherung

Analog zu Heizungsanlagen empfehlen wir bei mehreren Kältemaschinen eine Einzelabsicherung.

Um einen dauerhaft sicheren automatischen Betrieb in Kühlwassersystemen zu erreichen, ist es sinnvoll, die Druckhalteeinrichtungen mit Nachspeisesystemen auszurüsten und durch Servitec Entgasungssysteme zu ergänzen. Dies ist bei Kühlwassersystemen besonders wichtig, da auf thermische Entlüftungseffekte nänzlich verzichtet werden muss

Berechnung für Membran-Druckausdehnungsgefäße in Kühlwassersystemen

Schaltung: Vordruckhaltung, MAG auf der Saugseite, Umwälzpumpe, bei Nachdruckhaltung.

Ausgangsdaten		siehe Herstellerangaben/Hilfsgrößen zur Berechnung	
Rücklauftemperatur Vorlauftemperatur Tiefste Systemtemp. Höchste Systemtemp.	t _R [°C] t _V [°C] t _{Smin} [I] t _{Smax} [I]	zur Kältemaschine; bei $t_{\rm R}$ > 70 °C Vorschaltgefäß vorsehen! von der Kältemaschine z. B. Stillstand im Winter z. B. Stillstand im Sommer	
Frostschutzmittelzusatz	[%]	prozentuale Ausdehnung bei Frostschutzmittelzusatz n*	n* = %
Prozentuale Ausdehnung	[%]	zwischen tiefster Temperatur (-20° C) und Fülltemperatur (meist 10° C)	n*F = %
Statischer Druck	ρ_{st} [bar]		p _{st} = bar
Druckberechnung			
Vordruck	b ⁰ [pat]	$p_0 = p_{st} + 0.2$ bar (Sicherheitszuschlag) Reflex Empfehlung: $p_0 \ge 1.0$ bar Einhaltung des zul. Betriebsdrucks prüfen!	p ₀ = bar
Sicherheitsventil- ansprechdruck	p _{sv} [bar]	Reflex Empfehlung: für $p_{sv} \le 5$ bar: $p_{sv} \ge p_0 + 1,5$ bar für $p_{sv} > 5$ bar: $p_{sv} \ge p_0 + 2,0$ bar	p _{sv} = bar
Enddruck	p _e [bar]	$p_e \le p_{SV}$ - Schließdruckdifferenz nach TRD 721 für $p_{SV} \le 5$ bar: $p_e \le p_{SV}$ - 0,5 bar für $p_{SV} > 5$ bar: $p_e \le p_{SV}$ - 0,1 × p_{SV}	p _e = bar
Ausdehnungsgefäß			
Anlagenvolumen	V _A [I]	$V_A^{}$ = Kältemaschinen + Kühlregister + Rohrleitungen + Pufferspeicher + Sonstiges	V _A = Liter
Ausdehnungsvolumen	V _e [I]	$V_{e} = \frac{n^{\star}}{100} \times V_{A}$	V _e = Liter
Wasservorlage	V _v [I]	$V_v = 0.005 \times V_A$ mindestens 3 l für $V_n > 15$ l Mindestvorlagevolumen lt. Norm	V _v = Liter
Nennvolumen	V _n [1]	$\begin{split} & \text{für V}_{n} > 15 \text{ I: V}_{n} = \left(V_{e} + V_{v} + V_{D}^{*}\right) \times \frac{\rho_{e} + 1}{\rho_{e} - \rho_{o}} \\ & \text{für Vn} \leq 15 \text{ I: Wasservorlage} V_{v} \geq 0.2 \times V_{n} \\ & V_{n} = \left(V_{e} + V_{v} + V_{D}^{*}\right) \times \frac{\rho_{e} + 1}{\rho_{e} - \rho_{o}} \end{split}$	V _n = Liter
Kontrolle Anfangsdruck	p _a [bar]	$p_{a} = \frac{p_{e} + 1}{1 + \frac{(V_{e} + V_{0})(p_{e} + 1)}{V_{n}(p_{0} + 1)}} - 1 \text{ bar}$	p _a = bar
		Bedingung: $p_a \ge p_0 + 0.25 \dots 0.3$ bar, ansonsten Berechnung für größeres Nennvolumen	
Fülldruck	p _F [bar]	$p_{\rm F} = V_{\rm n} \times \frac{p_{\rm o} + 1}{V_{\rm n} - V_{\rm A} \times n_{\rm F}^* - V_{\rm v}} - 1 \text{ bar}$	p _F = bar
Ergebnis			
Reflex/ bar Liter		p ₀ = bar Vor Inbetriebnahme prüfen!	
		p _a = bar Einstellung Nachspeisung prüfen!	
		p _F = bar Neubefüllung der Anlage!	
		p _e = bar	

^{*} Gilt nur bei Einsatz von Reflex Servitec gem. Tabelle "Entgasung" 🛄 auf Seite 23.

MAGs in Solaranlagen

Die Berechnung erfolgt in Anlehnung an VDI 6002 und DIN 4807 T2.

Bei Solaranlagen ergibt sich die Besonderheit, dass die höchste Temperatur nicht durch den Regler am Wärmeerzeuger definiert werden kann, sondern von der Stillstandstemperatur am Kollektor bestimmt wird.

Nennvolumen Berechnung ohne Verdampfung im Kollektor

Die prozentuale Ausdehnung n* und der Verdampfungsdruck p_D^* werden auf die Stillstandstemperatur bezogen. Da bei bestimmten Kollektoren bis über 200°C erreicht werden können, scheidet dieses Berechnungsverfahren hier aus. Bei indirekt beheizten Röhrenkollektoren (System Heat Pipe) sind Systeme mit Begrenzung der Stillstandstemperatur bekannt. Falls ein Mindestbetriebsdruck von $p_0 \le 4$ bar zur Vermeidung von Verdampfung ausreichend ist, kann meist ohne Verdampfung gerechnet werden. Es ist zu berücksichtigen, dass bei dieser Variante eine erhöhte Temperaturbelastung auf Dauer die Frostschutzwirkung des Wärmeträgermediums reduziert.

Nennvolumen Berechnung mit Verdampfung im Kollektor

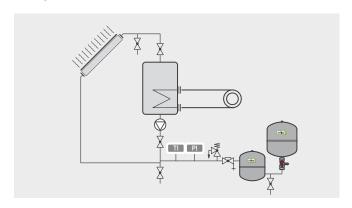
Bei Kollektoren mit Stillstandstemperaturen bis über 200 °C kann Verdampfung im Kollektor nicht ausgeschlossen werden. Der Verdampfungsdruck wird dann nur bis zum gewünschten Verdampfungspunkt (110 – 120 °C) berücksichtigt. Dafür wird bei der Ermittlung des Nennvolumens des MAG das gesamte Kollektorvolumen $V_{\rm k}$ zusätzlich zum Ausdehnungsvolumen $V_{\rm e}$ und der Wasservorlage $V_{\rm v}$ berücksichtigt. Diese Variante ist zu bevorzugen, weil sie durch die geringere Temperatur das Wärmeträgermedium weniger belastet und die Frostschutzwirkung länger erhalten bleibt.

Stoffwerte n*, p_n*

Frostschutzmittelzusätze von bis zu 40 % sind bei der Festlegung der prozentualen Ausdehnung n* und des Verdampfungsdrucks $\rho_{_{D}}$ * entsprechend den Herstellerangaben zu beachten.

Wird mit Verdampfung gerechnet, wird der Verdampfungsdruck $p_{\rm D}^*$ wahlweise bis zur Siedetemperatur 110 °C oder 120 °C berücksichtigt. Die prozentuale Ausdehnung n* wird dann zwischen der tiefsten Außentemperatur (z. B. -20 °C) und der Siedetemperatur ermittelt. Wird ohne Verdampfung gerechnet, so sind der Verdampfungsdruck $p_{\rm D}^*$ und die prozentuale Ausdehnung n* auf die Stillstandstemperatur des Kollektors zu beziehen.

Vordruck p_n, Mindestbetriebsdruck


Je nach Berechnungsverfahren wird der Mindestbetriebsdruck (= Vordruck) auf die Stillstandstemperatur im Kollektor (= ohne Verdampfung) oder die Siedetemperatur (= mit Verdampfung) abgestimmt. In beiden Fällen ist bei der oben angegebenen üblichen Schaltung der Umwälzpumpendruck Δp_p zu berücksichtigen, da das Ausdehnungsgefäß druckseitig nach der Umwälzpumpe eingebunden wird (Nachdruckhaltung).

Fülldruck p, Anfangsdruck p

In der Regel liegt die Fülltemperatur (10 °C) weit über der tiefsten Systemtemperatur, so dass der Fülldruck größer als der Anfangsdruck ist.

Vorschaltgefäße

Kann verbraucherseitig eine stabile Rücklauftemperatur ≤ 70 °C nicht garantiert werden, so ist am Ausdehnungsgefäß ein Vorschaltgefäß zu installieren.

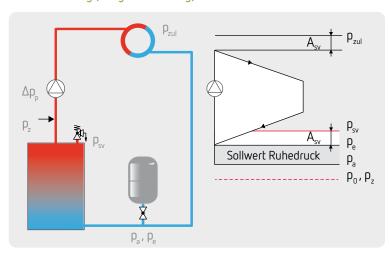
Berechnung für Membran-Druckausdehnungsgefäße in Solaranlagen

Schaltung: Nachdruckhaltung, Membran-Druckausdehnungsgefäß im Rücklauf zum Kollektor.

Ausgangsdaten		siehe Herstellerangaben/Hilfsgrößen zur Berechnung	
Kollektoren Wasserinhalt	V _K [I]	Summe aller Kollektoren	V _{Kges} = Liter
Höchste Vorlauftemp. Tiefste Außentemp. Frostschutzmittelzusatz	t _v [°C] t _a [°C] [%]	(110°C oder 120°C bei Solaranlagen mit Verdampfung) – 20°C prozentuale Ausdehnung bei Frostschutzmittelzusatz n* und Verdampfungsdruck bei Frostschutzmittelzusatz p _D *	n* =% p _D * = bar
Prozentuale Ausdehnung	[%]	zwischen tiefster Temperatur (-20°C) und Fülltemperatur (meist 10°C)	n*F =%
Statischer Druck	p _{st} [bar]		p _{st} = bar
Differenz an der Umwälzpumpe	Δp_{p} [bar]	Verdampfungsdruck p _p bei > 100°C (bei Frostschutzmittelzusatz p _p *) erf. Zulaufdruck der Umwälzpumpen lt. Herstellerangaben prüfen!	Δp _p = bar
Druckberechnung			
Vordruck	p _o [bar]	$p_0 = p_{st} + \Delta p_D + p_D^*$ Einhaltung des zul. Betriebsdrucks prüfen!	p ₀ = bar
Sicherheitsventil- ansprechdruck	p _{sv} [bar]	Reflex Empfehlung: für $p_{SV} \le 5$ bar: $p_{SV} \ge p_0 + 1,5$ bar für $p_{SV} > 5$ bar: $p_{SV} \ge p_0 + 2,0$ bar	p _{sv} = bar
Enddruck	p _e [bar]	$p_e \le p_{SV} - S$ chließdruckdifferenz nach TRD 721 für $p_{SV} \le 5$ bar: $p_e \le p_{SV} - 0.5$ bar für $p_{SV} > 5$ bar: $p_e \le p_{SV} - 0.1 \times p_{SV}$	p _e = bar
Ausdehnungsgefäß			
Anlagenvolumen	V _A [1]	$V_A = V_{Kges} + Rohrleitungen + Pufferspeicher + Sonstiges$	V _A = Liter
Ausdehnungsvolumen	V _e [I]	$V_{e} = \frac{n^{*}}{100} \times V_{A}$	V _e = Liter
Wasservorlage	V _v [I]	$V_v = 0.005 \times V_A$ mindestens 3 I für $V_n > 15$ I Mindestvorlagevolumen It. Norm	V _v = Liter
Nennvolumen	V _n [1]	$\begin{split} & \text{für V}_{n} > 15 \text{ I: V}_{n} = (\text{V}_{e} + \text{V}_{V} + \text{V}_{\text{Kges}}^{*}) \times \frac{\text{p}_{e} + 1}{\text{p}_{e} - \text{p}_{o}} \\ & \text{für V}_{n} \leq 15 \text{ I: Wasservorlage } \text{V}_{V} \geq 0.2 \times \text{V}_{n} \\ & \text{V}_{n} = (\text{V}_{e} + \text{V}_{V} + \text{V}_{\text{Kges}}^{*}) \times \frac{\text{p}_{e} + 1}{\text{p}_{e} - \text{p}_{o}} \end{split}$	V _n = Liter
Kontrolle Anfangsdruck	p _a [bar]	$V_{pa} = \frac{P_e + 1}{1 + \frac{(V_e + V_{cose}^3)(p_e + 1)}{V_n(p_0 + 1) 2n}} - 1 \text{ bar}$	p _a = bar
		Bedingung: p _a ≥ p ₀ + 0,250,3 bar, ansonsten Berechnung für größeres Nennvolumen	
Fülldruck	p _F [bar]	$p_{F} = V_{n} \times \frac{p_{0} + 1}{V_{n} - V_{A} \times n_{F}^{*} - V_{V}} - 1 \text{ bar}$	ρ _F = bar
Ergebnis			
Reflex S / bar Liter		p ₀ = bar Vor Inbetriebnahme prüfen!	
		p _a = bar Einstellung Nachspeisung prüfen!	
		p _F = bar Neubefüllung der Anlage!	
		$\rho_e =$ bar	

^{*} Gilt nur bei Einsatz von Reflex Servitec gem. Tabelle "Entgasung" 🛄 auf Seite 23.

Installation und Inbetriebnahme

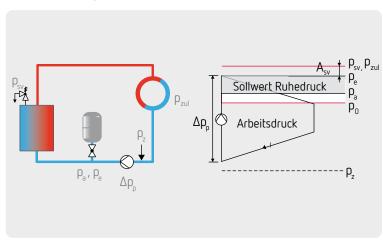

Hydraulische Einbindung

- Die Einbindung erfolgt vorzugsweise auf der Saugseite der Umwälzpumpe und im Rücklauf zum Heizkessel, Solarkollektor oder zur Kältemaschine.
- Bei Rücklauftemperaturen > 70 °C ist ein V Vorschaltgefäß erforderlich, bei Rücklauftemperaturen < 0 °C wird es empfohlen.
- Gesicherte Absperrung mit Entleerung nach DIN EN 12828 (gilt für alle hydraulischen Systeme) für Wartungsarbeiten vorsehen (extra bestellen). Bei größeren Anlagen ist auch die getrennte Anordnung von Entleerung und Absperrung möglich.
- Ausdehnungsleitungen sind nach den nationalen Vorschriften zu dimensionieren und zu installieren. Die DIN EN 12828 fordert, dass jeder Wärmeerzeuger durch mindestens eine Ausdehnungsleitung mit einem oder mehreren Ausdehnungsgefäßen verbunden ist. Auf Frostfreiheit ist unbedingt zu achten.
- Nachspeiseleitungen sind in das zirkulierende Anlagenwasser, nicht in die Ausdehnungsleitung, einzubinden.

-ür die Installation und Inbetriebnahme ist zwingend die entsprechende Montage- und Bedienungsanleitung zu beachten!

Vordruckhaltung (Saugdruckhaltung)

Die Druckhaltung wird **vor** der Umwälzpumpe, also saugseitig, eingebunden. Diese Art wird fast ausschließlich angewandt, da sie am einfachsten zu beherrschen ist.


Vorteile:

- + geringes Ruhedruckniveau
- + Arbeitsdruck → Ruhedruck, damit keine Gefahr von Unterdruckbildung

Nachteile:

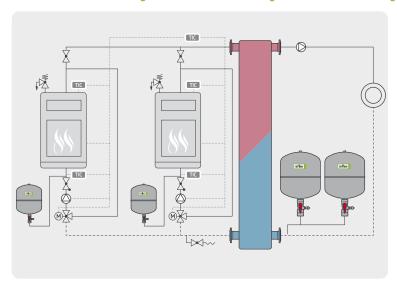
 bei hohem Umwälzpumpendruck (Großanlagen) hoher Arbeitsdruck, Netzbelastung p_{zul} beachten

Nachdruckhaltung

Die Druckhaltung wird **nach** der Umwälzpumpe, also druckseitig, eingebunden. Bei der Ruhedruckbestimmung muss ein anlagenspezifischer Differenzdruckanteil der Umwälzpumpe (50 ... 100 %) eingerechnet werden. Die Anwendung beschränkt sich auf wenige Einsatzfälle \rightarrow Solaranlagen.

Vorteile:

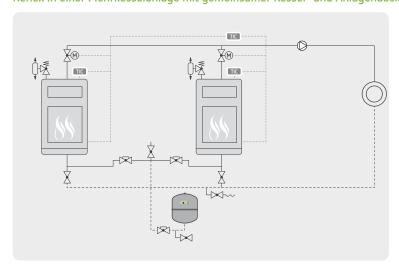
+geringes Ruhedruckniveau, falls nicht der gesamte Pumpendruck aufgelastet werden muss


Nachteile:

- hohes Ruhedruckniveau
- verstärkt auf Einhaltung des erforderlichen
 Zulaufdrucks p₇ lt. Herstellerangaben

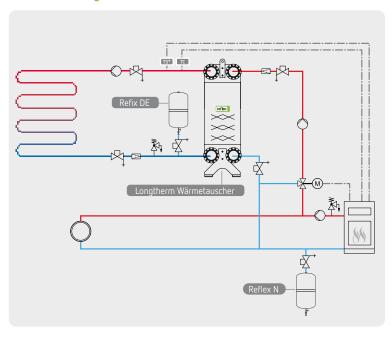
Einbindung Mehrkesselanlage

Sowohl die Einzelabsicherung jedes Kessels mit einem Ausdehnungsgefäß als auch eine gemeinsame Kessel- und Anlagenabsicherung ist möglich. Zu beachten ist, dass bei Absperrungen durch Kesselfolgeschaltungen der betreffende Kessel mit mindestens einem Ausdehnungsgefäß verbunden bleibt. Die günstigste Schaltung ist stets mit dem Kesselhersteller abzustimmen. In beiden Kreisen muss der Systemdruck und die Mediumbeschaffenheit (Glykolanteil) gleich sein.

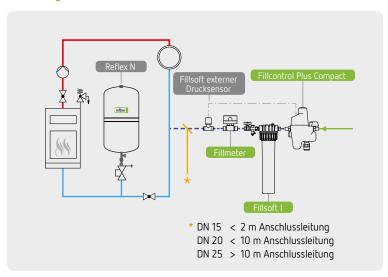

Reflex N Batterieschaltung in einer Mehrkesselanlage mit Einzelabsicherung

Durch die Batterieschaltung von mehreren "Reflex N" 6 oder 10 bar Gefäßen ergeben sich in der Regel preiswerte Alternativen zu "Reflex G" Großgefäßen.

Mit dem Brenner wird über die Temperaturregelung die entsprechende Kesselkreispumpe abgeschaltetet und das Motorventil (1) geschlossen. Der Kessel bleibt dabei mit seinem Reflex Gefäß verbunden. Häufigste Schaltung bei Kesseln mit Mindestrücklauftemperatur. Bei ausgeschaltetem Brenner wird die Zirkulation über den Kessel sicher vermieden.


Reflex in einer Mehrkesselanlage mit gemeinsamer Kessel- und Anlagenabsicherung

Mit Abschalten des Brenners wird das entsprechende Stellglied (M) über die Temperaturregelung (TC) geschlossen, ohne dass eine Fehlzirkulation über den abgesperrten Kessel möglich ist. Die Zusammenführung der Kesselausdehnungsleitung oberhalb der Kesselmitte verhindert Schwerkraftzirkulation. Bevorzugter Einsatz in Anlagen ohne Mindestkesselrücklauftemperatur (z. B. Brennwertanlagen).


Anlagen mit korrosionsgefährdeten Rohren

Fußbodenheizungen mit nicht diffusionsdichten Rohren

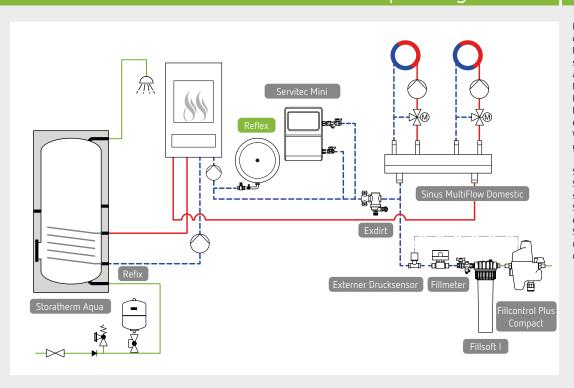
- Bei Anlagen mit sauerstoffreichem Wasser wie Fußbodenheizungen mit nicht diffusionsdichten Rohren empfiehlt sich die Systemtrennung (Trennung Medium des Kesselheizkreises vom Medium des sauerstoffreichen Fußbodenheizkreises) mittels Reflex Longtherm Wärmetauschern.
- Im Fußbodenheizkreis wird aufgrund der Korrosionsgefährdung ein Refix Ausdehnungsgefäß (alle wasserführenden Teile korrosionsgeschützt) eingesetzt.

Einhaltung der VDI 2035

- Zur Einhaltung der VDI 2035 wird das Reflex Fillsoft Gehäuse mit einer Enthärtungs- oder Entsalzungspatrone (je nach Wasserbeschaffenheit bzw. Vorgaben des Betreibers/Kesselherstellers) eingesetzt.
- Für eine ausreichende Wasservorlage sorgt die automatische Nachspeisestation Fillcontrol Plus Compact, die zudem über einen Systemtrenner zum Trinkwassernetz verfügt.

Die Richtlinienreihe VDI 2035 beschreibt den Stand der Technik für die Wasserqualität von Warmwasser-Heizungsanlagen und soll dazu beitragen, Schäden durch Korrosion und Steinbildung in diesen Anlagen zu minimieren. Die Reflex Produkte der Fillsoft-Serie entsprechen dieser Richtlinie. Nähere Informationen finden Sie in unserer Broschüre Nachspeisung & Wasseraufbereitung.

Installationsbeispiele

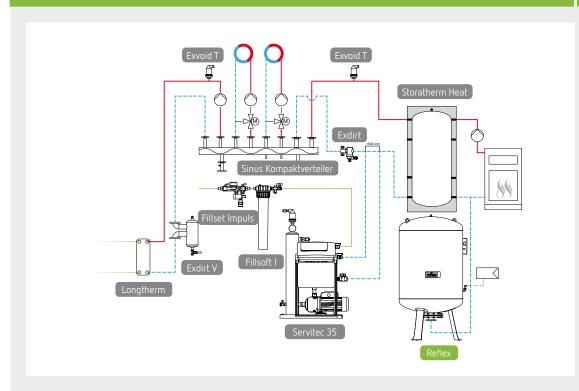

Reflex Gefäß mit automatischer Nachspeisung

Solution № 01

In Kombination mit der statischen Druckhaltung empfiehlt

sich der Einsatz einer automatischen Nach-speisung wie Reflex Fillcontrol Plus Compact, um eine ausreichende Wasservorlage zu gewährleisten.

Servitec Vakuum-Sprührohrentgasung sowie Schmutz- und Schlammabscheider entfernen zudem Störfaktoren wie Gase und Schmutz aus dem Anlagenwasser.


Reflex mit Membranbruchmelder

Solution No 04

Reflex Gefäß mit Membranbruchmelder zur Überwachung der Membrane (ab 1.000 I und Ø 1.000 mm).

Zur Trennung des Heiz- und Trinkwasserkreises wird ein Longtherm Wärmetauscher eingesetzt.

Fillset Impuls dient als Systemtrenner zum Trinkwassernetz Der Kontaktwasserzähler zur Ermittlung der Füll- und Nachspeisemenge wird mit der Servitec Steuerung vernetzt und von dieser ausgewertet.

Betrieb & Wartung

Bei Membran-Druckausdehnungsgefäßen ist gemäß der Betriebssicherheitsverordnung (BetrSichV) eine jährliche Wartung erforderlich. Die Reflex Montage-, Betriebs- und Wartungsanleitung mit den notwendigen Hinweisen für den Installateur und Betreiber ist zu beachten.

1. Sichtprüfung

- Gefäß auf Beschädigungen, Korrosion usw. überprüfen.
 Bei Schäden Reparatur bzw. Austausch vornehmen und die mögliche Ursache ermitteln.
- Gefäßeignung mit bauseitiger Verwendung abgleichen.

2. Membranprüfung

Das Gasfüllventil kurz betätigen. Sollte Wasser entweichen:

- Bei Gefäßen mit nicht tauschbarer Membran ist ein Austausch des Membran-Druckausdehnungsgefäßes vorzunehmen.
- Bei Gefäßen mit tauschbarer Membran Wechsel vornehmen oder zum weiteren Vorgehen optional Reflex-Service kontaktieren.

3. Gas-Vordruckeinstellung

Das Reflex Gefäß durch das Kappenventil vom System trennen und wasserseitig entleeren (Systemdruck beobachten).

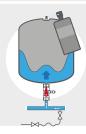
Vordruck p_0 am Gasfüllventil messen und ggf. wieder auf erforderlichen Mindestbetriebsdruck der Anlage einstellen.

$$p_{n}[bar] = p_{st} + 0.2 bar + p_{n}^{*} + \Delta p_{p}^{**}$$

- * Verdampfungsdruck pD nur relevant bei Heißwasseranlagen >100 °C.
- ** Kommt zum Tragen bei Nachdruckhaltung (Ausdehnungsgefäß druckseitig nach der Pumpe) z.B. in Solarthermieanlagen.
- Bei zu hohem Druck sollte Gas am Gasfüllventil abgelassen werden.
- Bei zu geringem Druck muss Stickstoff aus einer Druckflasche nachgefüllt werden.
- Neu eingestellten bzw. korrigierten Vordruck p_α auf dem Typenschild eintragen.

4. Funktionsprüfung in Betrieb

- Entleerung am Kappenventil schließen, Kappenventil vorsichtig öffnen.
- Systemdruck beobachten und nicht unter p_0 fallen lassen.
- Das System bis zum Fülldruck p_e entsprechend der Anlagentemperatur füllen.


$$p_{F}[bar] \ge p_{0} + 0.3 bar (bei Fülltemperatur 10 °C)^{*}$$

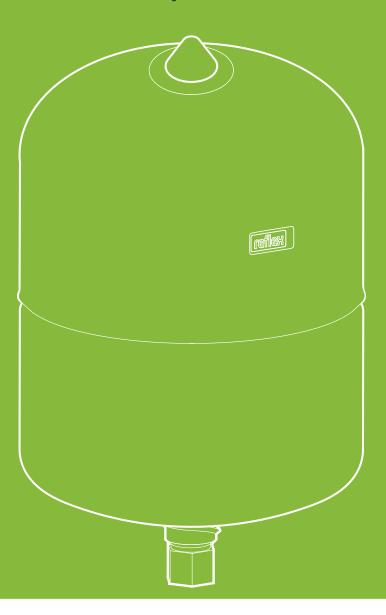
Gasdruckkontrolle in Betrieb: Gasdruck muss jetzt gleich dem Systemdruck sein (Gefäß in Funktion).

5. Dichtheitsprüfung Gasfüllventil

Optionale Hilfsmittel zum Füllen und Messen am Gasfüllventil entfernen und mit Lecksuchspray kontrollieren, ob das Gasfüllventil nach der Benutzung wieder dicht schließt. Abschließend die ebenfalls abdichtende Ventilkappe wieder auf das Gasfüllventil aufschrauben.

Entscheidende Vorteile

Qualitativ hochwertige Membran-Druckausdehnungsgefäße


- Lange Lebensdauer dank hochwertiger Membrane und stabilen Gefäßes
- Dank des Einsatzes einer Vollmembrane bei allen DD, DT, C-DE, DE und HW Gefäßen ist das Gefäß nicht mediumberührt und somit korrosionsbeständiger
- Zulassung gemäß Richtlinie über Druckgeräte 2014/68/EU
- Refix DD und DT entsprechen allen Anforderungen der DIN 4807T5

Verschiedenste Ausführungen und Anwendungsgebiete

- Für Trinkwasser-, Druckerhöhungs- und Wassererwärmungsanlagen nach DIN 1988
- Für Heizungs-, Wärmepumpen-, Kühlungsund Solaranwendungen sowie Betriebswasseranwendungen, die nicht den Anforderungen der DIN 1988 unterliegen

Schnelle Auslegung und Installation

- Intuitive Auslegungssoftware für die schnelle Auswahl und Berechnung
- Gefäße werden betriebsbereit geliefert
- Wartungsarmer Betrieb

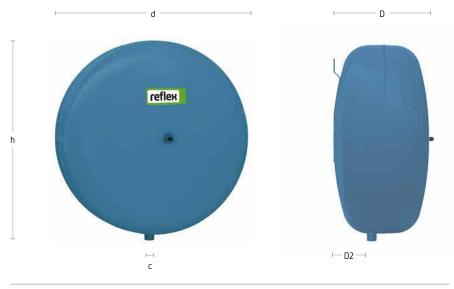
Produktprogramm Refix

Refix DD und Flowjet

Refix DD mit Flowjet Durchströmungsarmatur gewährleistet eine einfache und DIN-gerechte Montage, da Absperrbarkeit, Entleerbarkeit und Durchströmung des Refix Gefäßes gewährleistet sind.

DD 2 - 251

Flowjet Durchströmungsarmatur T-Stück Rp ¾" inklusive (für DD 8 – 331)


DD 331 mit Befestigungslaschen (Rückansicht)

Technische **1erkmale**

- für Trinkwasser-, Druckerhöhungs- und Wassererwärmungsanlagen nach DIN 1988
- mit Gewindeanschluss aus Edelstahl
- 33 Liter mit Befestigungslaschen
- durchströmt mit High-Flow-Durchströmungsstern
- nicht tauschbare Vollmembran nach DIN EN 13831, DIN 4807 T5, Elastomerleitlinie und W270
- gebaut und geprüft nach DIN 4807 T5, DIN DVGW Reg.-Nr. NW-0411AT2534
- Zulassung gemäß Richtlinie über Druckgeräte 2014/68/EU
- außen und innen nach KTW-A beschichtet
- mit werkseitig druckbeaufschlagtem Gasraum
- WRAS und ACS zertifizierte Gefäße auf Anfrage
- ausschließlich für den Einsatz in Kaltwasserleitungen (Montage- und Bedienungsanleitung beachten)

	Тур	ArtNr.		VPE	Vordruck	Anschluss c	Ø d	Höhe h	Gewicht
				[St.]	[bar]				[kg]
10 bar 70°C	DD 2	7381500	_	288	4	G ³ /4"	132	269	0,98
	DD 8	7308000	7307700	96	4	G ³ / ₄ "	206	345	1,80
	DD 12	7308200	7307800	60	4	G 3/4"	280	318	2,20
	DD 18	7308300	7307900	56	4	G ³ / ₄ "	280	418	3,04
	DD 25	7308400	7380400	42	4	G 3/4"	280	528	3,80
	DD 33	7380700	7380800	24	4	G 3/4"	354	468	5,06
25 bar 70 °C	DD 8	7290200	7290300	60	4	G ³ /4"	206	344	3,45

Refix C-DE

C-DE 8 – 801

Technische Merkmale

- vertikale Flachgefäße in Diskusform für Heizungs-, Wärmepumpen-, Kühlungs- und Solaranwendungen sowie Betriebswasseranwendungen, die <u>nicht</u> den Anforderungen der DIN 1988 unterliegen
- mit Gewindeanschluss aus Edelstahl
- nicht tauschbare Vollmembran nach DIN EN 13831
- nicht durchströmt, ohne Absperrung

- wasserberührende Teile korrosionsgeschützt
- Zulassung gemäß Richtlinie über Druckgeräte 2014/68/EU
- für Frostschutzmittelzusatz mit einer Konzentration von 25 bis 50 %
- langlebige Epoxidharzbeschichtung
- mit werkseitig druckbeaufschlagtem Gasraum

	Тур	ArtNr.	VPE	Vordruck	Anschluss c		Höhe h	Tiefe D	Tiefe D2	Gewicht
		blau	[St.]	[bar]				[mm]		[kg]
	C-DE 8	7270900	96	4	G ½"	280	296	176	52	2,70
	C-DE 12	7270910	60	4	G ½"	354	370	182	64	4,87
401	C-DE 18	7270920	42	4	G 3/4"	356	370	236	76	6,20
10 bar 70 °C	C-DE 25	7270930	42	4	G 3/4"	409	427	253	93	8,56
70 0	C-DE 35	7270940	24	4	G 3/4"	480	465	256	97	13,00
	C-DE 50	7270950	20	4	G 3/4"	480	465	332	125	15,80
	C-DE 80	7270960	8	4	G 3/4"	634	621	338	135	23,30

Refix DT

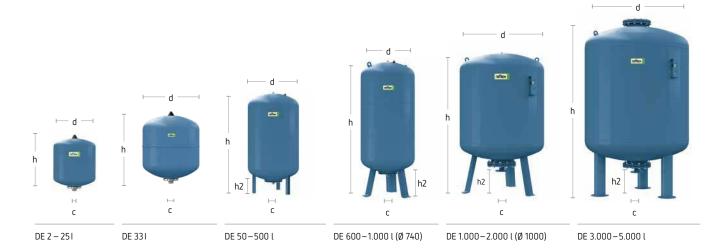
DT 60 - 5001 (mit Flowjet)

DT 600 - 1.0001 (Ø740)

DT 1.000 (Ø1000) - 2.0001

DT 3.0001

Technische **erkmale**


- für Trinkwasser-, Druckerhöhungs- und Wassererwärmungsanlagen nach DIN 1988 durchströmt
- Flowjet inkl. Absperrung und Entleerung oder Duo-Anschluss
- tauschbare Vollmembran nach DIN EN 13831,
 DIN 4807 T5, Elastomerleitlinie und W270 gebaut und geprüft nach DIN 4807 T5,
 DIN DVGW Reg.-Nr. NW-0411BR0350
- Zulassung gemäß Richtlinie über Druckgeräte 2014/68/EU

- außen und innen nach KTW-A beschichtet
- ab 600 Liter mit Muffe für optional erhältl. Membranbruchmelder
- Manometer und Vordruckventil durch Metallbügel geschützt
- langlebige Epoxidharzbeschichtung
- mit werkseitig druckbeaufschlagtem Gasraum
- WRAS und ACS zertifizierte Gefäße auf Anfrage
- ausschließlich für den Einsatz in Kaltwasserleitungen (bitte die Montage- und Bedienungsanleitung berücksichtigen)

	Тур	ArtNr.	VPE	Vordruck	Anschluss c	Ø d	Höhe h	Höhe h2	Gewicht
			[St.]	[bar]		[mm]	[mm]		[kg]
	DT 60	7309000	1	4	Rp 1 1/4"	409	766	80	15,00
	DT 80	7309100	8	4	Rp 1 1/4"	480	750	56	17,00
	DT 80	7365000	4	4	DN50/PN16	480	750	97	23,70
	DT 80	7335705	4	4	DN65/PN16	480	750	107	24,70
	DT 80	7335805	4	4	DN80/PN16	480	750	115	26,80
	DT 100	7309200	4	4	Rp 1 1/4"	480	834	56	19,20
	DT 100	7365400	4	4	DN50/PN16	480	834	97	26,80
	DT 100	7365405	4	4	DN65/PN16	480	834	107	27,80
	DT 100	7365406	4	4	DN80/PN16	480	834	114	28,90
	DT 200	7309300	1	4	Rp 1 1/4"	634	973	80	37,00
10 bar	DT 200	7365100	1	4	DN50/PN16	634	973	105	53,00
70°C	DT 200	7365105	1	4	DN65/PN16	634	973	115	54,00
/U C	DT 200	7365106	1	4	DN80/PN16	634	973	120	57,00
	DT 300	7309400	1	4	Rp 1 1/4"	634	1.273	80	51,00
	DT 300	7365200	1	4	DN50/PN16	634	1.273	105	59,00
	DT 300	7336305	1	4	DN65/PN16	634	1.273	115	60,00
	DT 300	7336405	1	4	DN80/PN16	634	1.273	120	63,00
	DT 400	7319305	1	4	Rp 1 1/4"	740	1.245	69	74,00
	DT 400	7365500	1	4	DN50/PN16	740	1.245	95	80,00
	DT 400	7336505	1	4	DN65/PN16	740	1.245	105	81,00
	DT 400	7336605	1	4	DN80/PN16	740	1.245	110	83,00
	DT 500	7309500	1	4	Rp 1 1/4"	740	1.475	69	72,00
	DT 500	7365300	1	4	DN50/PN16	740	1.475	90	88,00

	Тур	ArtNr.	VPE	Vordruck	Anschluss c	Ø d	Höhe h	Höhe h2	Gewicht
		grün	[St.]	[bar]		[mm]		[mm]	[kg]
	DT 500	7365307	1	4	DN65/PN16	740	1.475	100	89,00
	DT 500	7365307	1	4	DN80/PN16	740	1.475	110	92,00
	DT 600	7365600	1	4	DN50/PN16	740	1.859	233	164,00
	DT 600	7336705	1	4	DN65/PN16	740	1.859	233	165,00
	DT 600	7336806	1	4	DN80/PN16	740	1.859	235	168,00
	DT 800	7365700	1	4	DN50/PN16	740	2.324	233	204,00
	DT 800	7336905	1	4	DN65/PN16	740	2.324	233	205,00
	DT 800	7337006	1	4	DN80/PN16	740	2.324	233	208,00
	DT 1000/740	7365800	1	4	DN50/PN16	740	2.804	233	260,00
	DT 1000/740	7337105	1	4	DN65/PN16	740	2.804	233	261,00
10 bar	DT 1000/740	7337205	1	4	DN80/PN16	740	2.804	233	264,00
70 °C	DT 1000/1000	7320105	1	4	DN65/PN16	1.000	2.001	160	386,20
	DT 1000/1000	7337305	1	4	DN80/PN16	1.000	2.001	150	386,20
	DT 1000/1000	7337405	1	4	DN100/PN16	1.000	2.001	140	386,20
	DT 1500 DT 1500	7320305	1	4	DN65/PN16	1.200	2.001	158	502,40
	DT 1500 DT 1500	7337505 7337605	1	4	DN80/PN16 DN100/PN16	1.200 1.200	2.001 2.001	150 140	502,40 502,40
	DT 2000	7320505	1	4	DN65/PN16	1.200	2.461	158	686,50
	DT 2000	7320303	1	4	DN80/PN16	1.200	2.461	150	686,50
	DT 2000	7337705	1	4	DN100/PN16	1.200	2.461	140	686,50
	DT 3000	7320705	1	4	DN65/PN16	1.500	2.580	187	1.054,00
	DT 3000	7337905	1	4	DN80/PN16	1.500	2.530	180	1.057,00
	DT 3000	7338005	1	4	DN100/PN16	1.500	2.530	170	1.057,00
	DT 80	7316005	4	4	Rp 1 1/4"	480	750	56	27,80
	DT 80	7370000	4	4	DN50/PN16	480	750	97	33,00
	DT 80	7310306	4	4	DN65/PN16	480	750	107	34,00
	DT 80	7310307	4	4	DN80/PN16	480	750	114	36,00
	DT 100	7365408	4	4	Rp 1 1/4"	480	834	56	29,90
	DT 100	7370100	4	4	DN50/PN16	480	834	97	35,00
	DT 100	7370101	4	4	DN65/PN16	480	834	107	36,00
	DT 100	7370102	4	4	DN80/PN16	480	834	114	38,00
	DT 200	7365108	1	4	Rp 1 1/4"	634	973	80	55,00
	DT 200	7370200	1	4	DN50/PN16	634	973	105	61,00
	DT 200	7370205	1	4	DN65/PN16	634	973	115	62,00
	DT 200	7370206	1	4	DN80/PN16	634	973	120	65,00
	DT 300	7319205 7370300	1	4	Rp 1 1/4"	634	1.273	115	64,00
	DT 300 DT 300	7370300	1	4	DN50/PN16	634 634	1.273 1.273	105 80	70,00
	DT 300	7314205	1	4	DN65/PN16 DN80/PN16	634	1.273	120	71,00 74,00
	DT 400	7370400	1	4	DN50/PN16	740	1.394	235	115,00
	DT 400	7370400	1	4	DN65/PN16	740	1.394	235	121,00
	DT 400	7339005	1	4	DN80/PN16	740	1.394	235	124,00
	DT 500	7370500	1	4	DN50/PN16	740	1.615	235	136,00
	DT 500	7370507	1	4	DN65/PN16	740	1.615	235	137,00
16 bar	DT 500	7370505	1	4	DN80/PN16	740	1.615	235	140,00
70 °C	DT 600	7370600	1	4	DN50/PN16	740	1.859	235	174,00
	DT 600	7339105	1	4	DN65/PN16	740	1.859	235	175,00
	DT 600	7339205	1	4	DN80/PN16	740	1.859	235	178,00
	DT 800	7370700	1	4	DN50/PN16	740	2.324	235	224,00
	DT 800	7339305	1	4	DN65/PN16	740	2.324	235	225,00
	DT 800	7339406	1	4	DN80/PN16	740	2.324	235	228,00
	DT 1000/740	7370800	1	4	DN50/PN16	740	2.804	235	275,00
	DT 1000/740	7339505	1	4	DN65/PN16	740	2.804	235	276,00
	DT 1000/740	7339605	1	4	DN80/PN16	740	2.804	235	279,00
	DT 1000/1000	7320205	1	4	DN65/PN16	1.000	2.001	160	488,00
	DT 1000/1000	7339705	1	4	DN80/PN16	1.000	2.001	150	488,00
	DT 1000/1000	7339805	1	4	DN100/PN16	1.000	2.001	140	488,00
	DT 1500	7320405	1	4	DN65/PN16	1.200	2.220	158	630,00
	DT 1500	7339905	1	4	DN80/PN16	1.200	2.220	150	630,00
	DT 1500	7340005	1	4	DN100/PN16	1.200	2.220	140	630,00
	DT 2000 DT 2000	7320605 7340105	1	4	DN65/PN16 DN80/PN16	1.200 1.200	2.480 2.480	158 150	850,50 850,50
	DT 2000	7340105	1	4	DN100/PN16	1.200	2.480	140	850,50 850,50
	DT 3000	7340205	1	4	DN65/PN16	1.500	2.580	187	1.240,00
	DT 3000	7340305	1	4	DN80/PN16	1.500	2.580	180	1.240,00
	DT 3000	7340405	1	4	DN100/PN16	1.500	2.580	170	1.200,00
						7.555		.,,5	55,55

Refix DE

Technische Merkmale

- für Anlagen, die <u>nicht</u> den Anforderungen der DIN 1988 unterliegen, z. B. Feuerlösch-, Betriebswassersysteme, Fußbodenheizungen, Geothermie
- 33 Liter mit Befestigungslaschen
- ab 50 Liter in stehender Ausführung
- wasserberührende Teile korrosionsgeschützt
- Vollmembran nach DIN EN 13831/ab 50 Liter tauschbar
- nicht durchströmt, ohne Absperrung und ohne Entleerung

- ab Ø 1.000 mm inkl. Manometer
- Manometer und Vordruckventil durch Metallbügel geschützt
- Zulassung gemäß Richtlinie über Druckgeräte 2014/68/EU
- langlebige Epoxidharzbeschichtung
- mit werkseitig druckbeaufschlagtem Gasraum
- WRAS und ACS zertifizierte Gefäße auf Anfrage
- Ausführungen mit MBM auf Anfrage

	Тур	ArtNr.	VPE	Vordruck	Anschluss c	Ø d	Höhe h	Höhe h2	Gewicht
			[St.]	[bar]			[mm]	[mm]	[kg]
	DE 2	7200300	288	4	G ³ / ₄ "	132	260	_	0,98
	DE 8	7301000	96	4	G ³ / ₄ "	206	332	-	1,80
	DE 12	7302000	60	4	G 3/4"	280	310	_	2,16
	DE 18	7303000	56	4	G 3/4"	280	407	-	3,27
	DE 25	7304000	42	4	G 3/4"	280	518	_	3,75
	DE 33	7303900	24	4	G 3/4"	354	457	-	4,95
	DE 33 st	7305500	24	4	G 3/4"	354	520	66	5,70
	DE 50	7306005	20	4	G 1"	409	604	102	9,27
	DE 60	7306400	18	4	G 1"	409	734	161	10,50
	DE 80	7306500	10	4	G 1"	480	737	143	12,80
	DE 100	7306600	10	4	G 1"	480	852	143	14,80
10 bar	DE 200	7306700	4	4	G 1 1/4"	634	967	150	34,80
70 °C	DE 300	7306800	1	4	G 1 1/4"	634	1.267	150	41,60
	DE 400	7306850	1	4	G 1 1/4"	740	1.245	139	74,00
	DE 500	7306900	1	4	G 1 1/4"	740	1.475	133	74,00
	DE 600	7306950	1	4	G 1 ½"	740	1.859	263	128,00
	DE 800	7306960	1	4	G 1 ½"	750	2.324	263	176,00
	DE 1000	7306970	1	4	G 1 ½"	740	2.804	261	210,00
	DE 1000	7311405	1	4	DN65/PN16	1.000	2.001	286	308,00
	DE 1500	7311605	1	4	DN65/PN16	1.200	1.991	291	426,00
	DE 2000	7311705	1	4	DN65/PN16	1.200	2.451	291	717,00
	DE 3000	7311805	1	4	DN65/PN16	1.500	2.531	320	962,00
	DE 4000	7354000	1	4	DN65/PN16	1.500	3.080	320	1.132,00
	DE 5000	7354200	1	4	DN65/PN16	1.500	3.645	320	1.292,00

	Тур	ArtNr.	VPE	Vordruck	Anschluss c	Ø d	Höhe h	Höhe h2	Gewicht
			[St.]	[bar]				[mm]	[kg]
	DE 8	7301006	96	4	G 3/4"	206	337	_	2,32
	DE 12	7302105	72	4	G 3/4"	280	310	_	3,05
	DE 25	7304015	42	4	G ³ /4"	280	518	_	5,00
	DE 80	7348600	4	4	G 1"	480	744	138	20,12
	DE 100	7348610	4	4	G 1"	480	849	132	23,00
	DE 200	7348620	1	4	G 1 1/4"	634	967	150	57,00
	DE 300	7348630	1	4	G 1 1⁄4"	634	1.267	150	66,00
	DE 400	7348640	1	4	G 1 ½"	740	1.394	263	118,00
16 bar	DE 500	7348650	1	4	G 1 ½"	740	1.614	263	133,00
70°C	DE 600	7348660	1	4	G 1 ½"	740	1.859	263	158,00
	DE 800	7348670	1	4	G 1 ½"	740	2.324	263	202,00
	DE 1000	7348680	1	4	G 1 ½"	740	2.804	263	240,00
	DE 1000	7312805	1	4	DN65/PN16	1.000	2.001	286	530,00
	DE 1500	7312905	1	4	DN65/PN16	1.200	1.991	291	685,00
	DE 2000	7313005	1	4	DN65/PN16	1.200	2.451	291	895,00
	DE 3000	7313105	1	4	DN65/PN16	1.500	2.531	320	1.240,00
	DE 4000	7354100	1	4	DN65/PN16	1.500	3.120	320	1.442,00
	DE 5000	7354300	1	4	DN65/PN16	1.500	3.655	320	1.844,00
	DE 8	7290100	60	4	G 3/4"	206	338	_	3,15
	DE 80	7317600	1	4	DN50/PN40	450	942	159	70
	DE 120	7313700	1	4	DN50/PN40	450	1.253	159	100
	DE 180	7313500	1	4	DN50/PN40	450	1.528	159	116
	DE 300	7313800	1	4	DN50/PN40	750	1.318	160	150
27.	DE 400	7313300	1	4	DN50/PN40	750	1.423	160	245
25 bar 70 °C	DE 600	7321500	1	4	DN50/PN40	750	1.868	159	290
,,,,	DE 800	7321200	1	4	DN50/PN40	750	2.268	159	355
	DE 1000	7321000	1	4	DN50/PN40	750	2.768	159	245
	DE 1000	7322200	1	4	DN65/PN40	1.000	2.051	242	800
	DE 1500	7322100	1	4	DN65/PN40	1.200	2.071	291	850
	DE 2000	7313400	1	4	DN65/PN40	1.200	2.531	240	960
	DE 3000	7345700	1	4	DN65/PN40	1.500	2.619	269	1.550,00

Refix DC

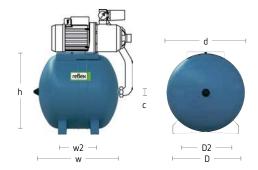
DC 50-400 l DC 500-600 l

Technische

- für Anlagen, die <u>nicht</u> den Anforderungen der DIN 1988 unterliegen, z. B. Feuerlösch-, Betriebswassersysteme, Fußbodenheizungen
- wasserberührende Teile korrosionsgeschützt
- nicht tauschbare Halbmembran nach DIN EN 13831
- nicht durchströmt, ohne Absperrung und ohne Entleerung

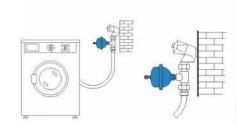
- Zulassung gemäß Richtlinie über Druckgeräte 2014/68/EU
- langlebige Epoxidharzbeschichtung
- mit werkseitig druckbeaufschlagtem Gasraum
- WRAS und ACS zertifizierte Gefäße auf Anfrage

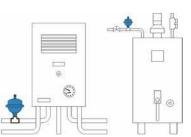
	Тур	ArtNr.	VPE	Vordruck	Anschluss c	Ø d	Höhe h	Höhe h2	Gewicht
		blau	[St.]	[bar]		[mm]	[mm]	[mm]	[kg]
	DC 25	7200400	42	2	G 1"	289	510	_	3,34
	DC 50	7309600	20	4	R 1"	418	588	115	9,35
	DC 80	7309700	12	4	R 1"	489	676	103	12,44
	DC 100	7309800	10	4	R 1"	489	782	103	14,28
10 bar	DC 140	7309900	1	4	R 1"	489	997	104	20,30
70 °C	DC 200	7363500	1	4	R 1"	643	883	91	29,27
	DC 300	7363600	1	4	R 1"	643	1.184	93	38,00
	DC 400	7363700	1	4	R 1"	749	1.173	81	54,00
	DC 500	7363800	1	4	R 1"	749	1.392	82	71,00
	DC 600	7363900	1	4	R 1"	749	1.629	75	80,00


Refix HW

HW 25-100 l

- Behälterfläche und wasserberührte Teile sind korrosionsgeschützt
- Vollmembran nach DIN EN 13831/ ab 50 Liter tauschbar




- zulässige Betriebstemperatur 70°C
- Zulassung gemäß Richtlinie über Druckgeräte 2014/68/EU
- langlebige Epoxidharzbeschichtung
- mit werkseitig druckbeaufschlagtem Gasraum
- WRAS und ACS zertifizierte Gefäße auf Anfrage

	Тур	ArtNr.	VPE	Vordruck	Anschluss c	Ø d	Höhe h	Breite w	Breite w2	Tiefe D	Tiefe D2	Gewicht
			[St.]	[bar]		[mm]	[mm]				[mm]	[kg]
10bar 70°C	HW 25	7200310	36	1,5	G 3/4"	280	301	518	227	270	214	5,05
	HW 50	7200320	20	2	G 1"	409	432	503	175	350	285	9,00
	HW 60	7200330	16	2	G 1"	409	432	577	175	350	285	10,00
	HW 80	7200340	16	2	G 1"	480	504	593	185	350	285	12,50
	HW 100	7200350	16	2	G 1"	480	504	706	305	350	285	14,06

Refix WD

WD 0,165 l

Technische

- für Geräte mit schnell schließenden Armaturen,
 z. B. Waschmaschinen, Geschirrspülautomaten
- Zulassung gemäß Richtlinie über Druckgeräte 2014/68/EU
- Gesamtinhalt 165 cm³

- zulässige Betriebstemperatur 70°C
- WRAS und ACS zertifizierte Gefäße auf Anfrage
- nicht tauschbare Halbmembran nach DIN EN 13831
- nicht zugelassen für Trinkwasser

	Тур	ArtNr.	VPE [St.]	Vordruck [bar]	Anschluss c	Ø d [mm]	Höhe h [mm]	Gewicht [kg]
10 bar 70 °C	WD	7351000	576	3,5	G ½"	83	111	0,30

Zubehör Refix

Flowjet

- gesicherte Absperrarmatur mit Entleerung für Refix DD nach DIN 4807 T5
- zulässiger Betriebsüberdruck 16 bar
- zulässige Betriebstemperatur 70 °C
- Anschlüsse beidseitig G ¾", I/A Gewinde
- kombinierbar auch mit bauseitigen T-Stücken
- mit Durchgangsnennweite 1"

Wandhalterung mit Spannband

 Konsole mit Spannband für Reflex 8 – 25 Liter, vertikale Montage

Anschlussgruppe

- für die besonders schnelle Montage und Wartung von MAGs (empfohlen für Refix DE und DC)
- inkl. gesicherter Absperrung und Anschlussbogen mit Verschraubung
- mit Entleerungshahn G ½" und Schlauchtülle
- nach DIN EN 12828

Vordruckprüfgerät

DIN EN 12828: "Ausdehnungsgefäße sind jährlich zu warten. Dabei ist mit einer Armatur im wasserlosen Zustand der Gasvordruck $\rm p_n$ zu überprüfen und ggf. zu korrigieren."

Vordruckprüfgerät bis ca. 9 bar

Kappenventil

- gesicherte Absperrung für die Wartung und Demontage von Ausdehnungsgefäßen
- mit Entleerung
- nach DIN EN 12828
- PN 10 / 120 °C
- ab Baugröße N/S/G 80 ist die 1" Anschlussgröße zu wählen

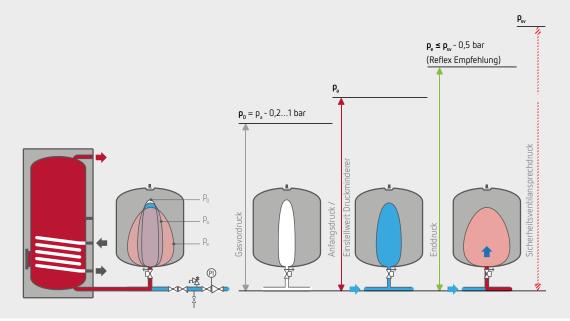
Тур	ArtNr.	Gewicht [kg]
Vordruckprüfgerät	9119198	0,06
Flowjet G 3/4"	9116799	0,24
Wandhalterung mit Spannband	7611000	0,22
Anschlussgruppe AG 1"	9119204	0,85
Anschlussgruppe AG 1 1/4"	9119205	1,00
Anschlussgruppe AG 1 1/2"	9119206	1,15
Kappenventil SU R ¾" x ¾"	7613000	0,26
Kappenventil SU R 1" x 1"	7613100	0,57
Membranbruchmelder MBM II	7857700	0,62

Auswahl, Berechnung und Installation

Drücke im System

Gültig für Membran-Druckausdehnungsgefäße in der Trinkwassererwärmung

Überdrücke


p_{ct} = Statischer Druck

 p_0 = Mindestbetriebsdruck

p_a = Anfangsdruck

c = Enddruck

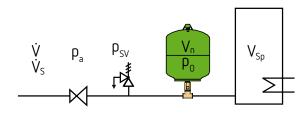
 p_{sv} = Sicherheitsventilansprechdruck

Einsatzgrenzen gemäß DVGW

Für den Einsatz von MAG-W sind folgende Auslegungsparameter gem. DIN 4807 T5 maßgebend:

Trinkwassererwärmerinhalt V_{Sp} in I Nennvolumen des MAG-W V_n in I

Ansprechdruck Sicherheitsventil $p_{sv} = 6.0$ oder 10,0 bar Arbeitsdruckdifferenz $d_{pA} = 20\%$ von p_{sv} in bar


Anlagenenddruck ($p_e = p_{SV} - d_{pA}$) $p_e = 4,8$ oder 8,0 bar Vordruck im MAG-W $p_o = p_a - 0,2$ in bar

Anfangsdruck $p_{\text{a}} \hspace{1cm} p_{\text{a}} \hspace{1cm} \text{in bar}$ (Ruhedruck hinter dem Druckminderer)

Kaltwassertemperatur $t_w = 10 \, ^{\circ}\text{C}$ konstant Warmwassertemperatur $t_{ww} = 60 \, ^{\circ}\text{C}$ konstant Ausdehnung des Wassers $n = 1,67 \, ^{\circ}\text{C}$

Schnellauswahl Refix

Auswahl nach Nennvolumen $V_{_{\! n}}$

Auswahl nach dem Nennvolumen $V_{\scriptscriptstyle n}$

10°C Kaltwassereintrittstemperatur

60 °C Speichertemperatur

Gasvordruck $p_0 = 3.0 \, bar$

Einstelldruck Druckminderer p_a≥ 3,2 bar

Gasvordruck

 $p_0 = 4.0 \text{ bar} = \text{Standard}$

Einstelldruck Druckminderer p_a ≥ 4,2 bar

Schnellaus	Schnellauswahl Refix											
p _{sv} [bar]	6	7	8	10	p _{sv} [bar]	6	7	8	10			
V _{sp} [Liter]		Vn Nennvolun	nen Refix [Lite	er]	V _{sp} [Liter]		Vn Nennvolun	nen Refix [Lite	er]			
90	8	8	8	8	90	8	8	8	8			
100	8	8	8	8	100	12	8	8	8			
120	8	8	8	8	120	12	8	8	8			
130	8	8	8	8	130	12	8	8	8			
150	8	8	8	8	150	18	12	8	8			
180	12	8	8	8	180	18	12	8	8			
200	12	12	8	8	200	18	12	12	8			
250	12	12	12	8	250	25	18	12	12			
300	18	18	12	12	300	25	18	18	12			
400	25	18	18	18	400	33	33	15	25			
500	25	25	18	18	500	60	33	25	25			
600	33	25	25	18	600	60	60	33	25			
700	33	33	25	25	700	60	60	33	25			
800	60	33	33	25	800	80	80	60	25			
900	60	60	33	25	900	80	60	60	33			
1.000	60	60	33	33	1.000	100	60	60	60			
1.500	80	80	60	60	1.500	200	100	80	60			
2.000	100	100	80	80	2.000	200	200	100	80			
3.000	100	100	100	100	3.000	300	200	200	100			

Speichervolumen (V_{sp})

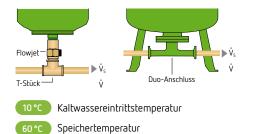
900 Liter Sicherheitsventil (psv)

Ausdehnung (60°C/10°C) (n)

10,0 bar Gefäßvolumen (V_n) 1,7%

31,5 Liter

Temperatur Warmwasser (T_{ww}) 60°C Einstelldruck Druckminderer (pa) 4,2 bar


Vordruck (p₀)

4,0 bar

Auswahl nach Spitzenvolumenstrom V

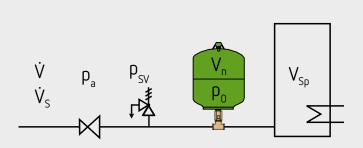
Bei **durchströmten** Trinkwasserausdehnungsgefäßen ist die Bestimmung des Nennvolumens V_n allein nicht ausreichend. Zusätzlich ist zu prüfen, ob der max. empfohlene Spitzenvolumenstrom V_s nicht überschritten wird und welcher Druck-verlust Δp entsteht.

Ist das Nennvolumen des Refix ausgewählt, muss bei durchströmten Gefäßen geprüft werden, ob der Spitzenvolumenstrom \dot{V}_s , der sich aus der Rohrnetzberechnung nach DIN 1988 ergibt, am Refix durchgesetzt werden kann. Ist eine größere Anschlussnennweite erforderlich, ist beim Refix DD ggf. statt eines Gefäßes 8–33 Liter ein Refix DT 60 Liter für einen größeren Durchfluss einzusetzen.

verfügbare Anschlüsse		empf. max. Spitzenvolumenstrom \dot{V}_s	tatsächl. Druckverlust bei Volumenstrom V
Refix DD	8 – 33 Liter	25. 34	/ V m³/h \2
mit oder ohne Flowjet	Rp ¾" = Standard	≤ 2,5 m³/h	$\Delta p = 0.03 \text{ bar } \times \left(\frac{V \text{ m}^3 / \text{h}}{2.5 \text{ m}^3 / \text{h}} \right)^2$
Durchgang T-Stück	Rp 1" (bauseits)	≤ 4,2 m³/h	vernachlässigbar
Refix DT mit Flowjet Rp 11/4"	60 – 500 Liter	≤ 7,2 m³/h	$\Delta p = 0.04 \text{ bar } \times \left(\frac{\dot{V} \text{ m}^3/\text{h}}{7.2 \text{ m}^3/\text{h}}\right)^2$
Refix DT Duo-Anschluss DN 50 Duo-Anschluss DN 65 Duo-Anschluss DN 80 Duo-Anschluss DN 100	80 – 3.000 Liter	$≤ 15 \text{ m}^3/\text{h}$ $≤ 27 \text{ m}^3/\text{h}$ $≤ 36 \text{ m}^3/\text{h}$ $≤ 56 \text{ m}^3/\text{h}$	$\begin{split} \Delta p &= 0.14 \text{ bar } \times \left(\frac{\dot{V} \text{ m}^3/\text{h}}{15 \text{ m}^3/\text{h}}\right)^2 \\ \Delta p &= 0.11 \text{ bar } \times \left(\frac{\dot{V} \text{ m}^3/\text{h}}{27 \text{ m}^3/\text{h}}\right)^2 \\ \text{vernachlässigbar} \end{split}$
Refix DE, DC (nicht durchströmt)		unbegrenzt	$\Delta p = 0$

 $^{^{\}star}$ Ermittelt für eine Geschwindigkeit von 2 m/s.

Ausführliche Berechnung und Planungshinweise


Trinkwasser ist ein Lebensmittel. Ausdehnungsgefäße in Trinkwasserinstallationen müssen deshalb den besonderen Anforderungen der DIN 4807 T5 entsprechen. Es sind nur durchströmte Gefäße zulässig.

Refix in Wassererwärmungsanlagen

Berechnung

Die Berechnung erfolgt nach DIN 4807 T5, siehe auch folgende Seite.

Schaltung

Das Sicherheitsventil ist in der Regel unmittelbar am Kaltwassereintritt des Wassererwärmers zu installieren. Bei Refix DD und DT darf das Sicherheitsventil in Strömungsrichtung gesehen auch unmittelbar vor der Durchströmungsarmatur eingebaut werden, wenn folgende Bedingungen eingehalten werden:

Refix DD mit T-Stück: Rp ³/₄" max. 200 l Wassererwärmer

Rp 1" max. 1.000 I Wassererwärmer

Refix DT Durch-

strömungsarmatur: Rp 11/4" max. 5.000 l Wassererwärmer

Stoffwerte n, p_D

In der Regel Ermittlung zwischen Kaltwassertemperatur 10 $^{\circ}\text{C}$ und maximaler Warmwassertemperatur 60 $^{\circ}\text{C}.$

Thermische Desinfektion

Bei einer thermischen Desinfektion wird das gesamte Warm-wasserleitungsnetz auf >70 °C erwärmt. Da Membran-Druckausdehnungsgefäße in der Kaltwasserzuleitung installiert werden, sind diese von der erhöhten Temperatur nicht betroffen. Ist eine thermische Desinfektion vorgesehen, ist diese lediglich bei der Berechnung einzubeziehen.

Vordruck p_o, Mindestbetriebsdruck

Der Mindestbetriebsdruck beziehungsweise Vordruck p_0 im Ausdehnungsgefäß muss mindestens 0,2 bar **unter** dem minimalen

Fließdruck liegen. Je nach Entfernung zwischen dem Druckminderer und dem Refix sind Vordruckeinstellungen von 0,2 bis 1,0 bar unter dem Einstelldruck des Druckminderers erforderlich.

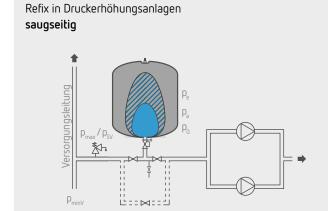
Anfangsdruck p_a

Er ist identisch mit dem Einstelldruck des Druckminderers. Druckminderer sind nach DIN 4807 T5 vorgeschrieben, um einen stabilen Anfangsdruck und damit die volle Aufnahmefähigkeit des Refix zu erreichen.

Ausdehnungsgefäß

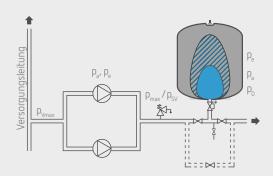
In Anlagen mit Trinkwassernutzung nach DIN 1988 dürfen nur durchströmte Refix Gefäße nach DIN 4807 T5 eingesetzt werden. Bei Nichttrinkwasser sind Refix mit einem Anschluss ausreichend.

Ausgangsdaten	siehe H	lerstellerangaben/Hilfsgrößen zur B	erechnung	
$ \begin{array}{ll} \text{Speichervolumen} & \text{V}_{\text{Sp}}\left[I\right] \\ \text{W\"{a}rmeleistung} & \hat{\textbf{Q}}_{\text{W}}\left[k\textbf{W}\right] \\ \text{Wassertemperatur} & \textbf{t}_{\text{WW}}\left[^{\circ}\textbf{C}\right] \\ \end{array} $	entsprect	nend Reglereinstellung 50 60°C		
Prozentuale Ausdehnung [%]				n =%
$ \begin{array}{ll} \text{Druckminderer} & \text{p}_{_{3}}\left[\text{bar}\right] \\ \text{Sicherheitsventil} & \text{p}_{_{SV}}\left[\text{bar}\right] \\ \text{Spitzendurchfluss} & \text{V}_{_{S}}\left[\text{m}^{3}/\text{h}\right] \end{array} $		ruck npfehlung 10 bar		$p_a = bar$ $p_{SV} = bar$ $V_S = [m^3/h]$
Auswahl nach dem Nennvolumen V	n			
Vordruck p_0 [bar]	Vordruck	(0,2 1,0 bar) 0,2 1,0 bar unter Druckminderer ei Entfernung zwischen Druckminderer u		p ₀ = bar
Nennvolumen V _n [I]	$V_n = V_{Sp} \times$	$\frac{n \times (p_{sv} + 0.5) (p_0 + 1.2)}{100 \times (p_0 + 1) (p_{sv} - p_0 - 0.7)}$		V _n =Liter
Auswahl nach dem Spitzenvolumen				
des DD Gefäßes in den vollen Durch	empf. max. Spitzen-	tatsächl. Druckverlust		Δp =bar
Refix DD 8 – 33 Liter mit oder ohne Flowjet Durchgang T-Stück Rp ¾" = Standard T-Stück Rp 1" (bauseits) Refix DT 60 – 500 Liter	volumenstrom \dot{V}_s * $\leq 2.5 \text{ m}^3/\text{h}$ $\leq 4.2 \text{ m}^3/\text{h}$	bei Volumenstrom $\hat{\mathbf{V}}$ $\Delta p = 0.03 \text{ bar } \times \left(\frac{\dot{V} p_0 \left[m^3 / h \right]}{2.5 \text{ m}^3 / h} \right)^2$ vernachlässigbar	Flowjet Vs T-Stück V	u =
mit Flowjet Rp 11/4"	≤ 7,2 m³/h	$\Delta p = 0.04 \text{ bar } \times \left(\frac{\dot{V}[m^3/h]}{7.2 \text{ m}^3/h}\right)^2$		
Refix DT 80 – 3.000 Liter Duo-Anschluss DN 50 Duo-Anschluss DN 65	≤ 15 m³/h ≤ 27 m³/h	$\Delta p = 0.14 \text{ bar } \times \left(\frac{\dot{V}[m^3/h]}{15 m^3/h} \right)^2$ $\Delta p = 0.11 \text{ bar } \times \left(\frac{\dot{V}[m^3/h]}{27 m^3/h} \right)^2$	Duo-Anschluss \dot{V}_s	
Duo-Anschluss DN 80 Duo-Anschluss DN 100	≤ 36 m³/h ≤ 56 m³/h	vernachlässigbar	550 / 1135111055	
Refix DE, DC (nicht durchströmt)	unbegrenzt	Δρ = 0		
Ergebnis				
Refix DT5 I	V _n =1			
Refix DD I $G = (Standard Rp \frac{3}{4}" beilieg.)$	p ₀ = ba	ar		
Refix DT5 I				


Refix in Druckerhöhungsanlagen

Trinkwasser ist ein Lebensmittel. Ausdehnungsgefäße in Trinkwasserinstallationen müssen deshalb den besonderen Anforderungen der DIN 4807 T5 entsprechen. Es sind nur durchströmte Gefäße zulässig.

Berechnung


Die Berechnung erfolgt nach DIN 1988 T5, Technische Regeln für Trinkwasserinstallationen, Druckerhöhung und Druckminderung.

Schaltung

Auf der Vordruckseite einer Druckerhöhungsanlage (DEA) entlasten Refix Ausdehnungsgefäße die Anschlussleitung und das Versorgungsnetz. Der Einsatz ist mit dem Wasserversorgungsunternehmen abzustimmen.

Refix in Druckerhöhungsanlagen druckseitig

Auf der Nachdruckseite einer Druckerhöhungsanlage (DEA) wird durch den Einbau von Refix, insbesondere bei kaskadengesteuerten Anlagen, die Schalthäufigkeit verringert. Auch der beidseitige Einbau bei DEA kann erforderlich werden.

Vordruck p₀, Anfangsdruck p_a

Der Mindestbetriebsdruck beziehungsweise Vordruck p_0 im Refix muss circa 0,5 bis 1 bar unter dem minimalen Versorgungsdruck bei Einbau auf der Saugseite und 0,5 bis 1 bar unter dem Einschaltdruck auf der Druckseite einer DEA eingestellt werden. Da der Anfangsdruck p_a mindestens um 0,5 bar über dem Vordruck liegt, ist immer eine ausreichende Wasservorlage vorhanden, eine wichtige Voraussetzung für einen verschleißarmen Betrieb.

In Anlagen mit Trinkwassernutzung nach DIN 1988 dürfen nur durchströmte Refix-Gefäße nach DIN 4807 T5 eingesetzt werden. Bei Nichttrinkwasser sind Refix mit einem Anschluss ausreichend.

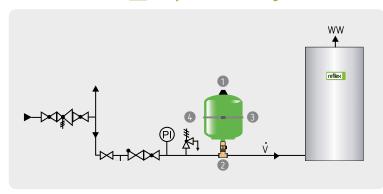
Es ist darauf zu achten, dass auch durch Druckstöße der maximal zulässige Betriebsdruck nicht überschritten wird

Schaltung saugseitig: Refix auf der Vordruckseite der DEA

Einbau nach Abstimmung mit dem zuständigen Wasserversorgungsunternehmen (WVU). Die Notwendigkeit ist dann gegeben, wenn nachfolgende Kriterien nicht eingehalten werden:

- bei Ausfall einer Pumpe der DEA darf sich die Strömungsgeschwindigkeit in der Anschlussleitung der DEA um nicht mehr als 0,15 m/s ändern
- bei Ausfall aller Pumpen um nicht mehr als 0,5 m/s
- während der Pumpenlaufzeit darf der Mindestversorgungsdruck p_{minV} um nicht mehr als 50 % unterschritten werden und muss mindestens 1 bar betragen

Ausgangsdaten		siehe Herstellerangaben			
min. Versorgungsdruck		Auswahl nach DIN 1988 T			
max. Förderstrom	p _{minV} [bar]	max. Förderstrom VmaxP / m³/h	Refix DT mit Duo- Anschluss V _n / Liter	Refix DT V₁ / Liter	V _o = Liter
	\dot{V}_{maxP} [m ³ /h]	≤ 7	300	300	v _n = Litei
		> 7 ≤ 15	500	600	
		> 15		800	
Vordruck	p _o [bar]		$p_0 = p_{minV} - 0.5 \text{ bar}$		p ₀ = bar
Ergebnis					
Refix DT5	1	V _n = I			
mit Duo-Anschluss DN 50		p ₀ = bar			
Refix DT5	l				

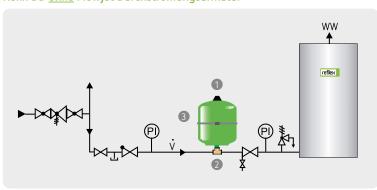

Schaltung druckseitig: Refix auf der Nachdruckseite der DEA

Ausgangsdaten		siehe Herstelleranga	ben/Hilfs	größen zur l	Berechnun	9				
Zur Begrenzung der Schalthäufigkeit bei druckgesteuerten Anlagen										
Max. Förderhöhe der DEA Max. Versorgungsdruck Einschaltdruck Ausschaltdruck Max. Förderstrom Schalthäufigkeit Pumpenanzahl Elektrische Leistung der	H _{max} [mWs] P _{max} [bar] P _E [bar] P _A [bar] V _{maxP} [l/h] s [1/h] n [Stück]	s - Schalthäufigkeit Pumpenleistung		20 ≤ 4,0	15 ≤ 7,5	10 ≤ 7,5				
stärksten Pumpe	P _{el} [kW]									
Nennvolumen	Vn [I]	$Vn = 0.33 \times V_{maxP}$ –	(p _A -	$p_A + 1$ $p_E \times s \times n$				V _n = Liter		
Zur Speicherung der Mindest	bevorratungsmer	nge V _e zwischen Ein ur	nd Aus de	r DEA						
Einschaltdruck Ausschaltdruck Vordruck Refix Bevorratungsmenge	p _e [bar] p _a [bar] V _e [l]	Reflex Empfehlung: für $p_0 = p_{\epsilon} - 0.5$ bar						p ₀ = bar		
Nennvolumen	V _n [I]	$V_n = V_e$ $\frac{(p_E + 1) (p_A + 1)}{(p_0 + 1) (p_A - p_E)}$						V _n = Liter		
Kontrolle zul. Betriebsüberdruck	p _{max} [bar]	$p_{max} = \leq 1,1 p_{zul}$	H	nax [mWs]				p _{max} = bar		
Ausgangsdaten										
Refix DT5	1	V _n = I								
mit Duo-Anschluss DN 50		V ₀ = I								
Refix DT5	1	p ₀ = bar								

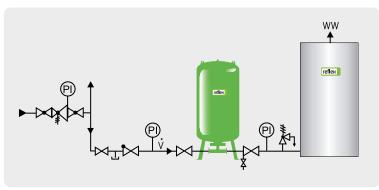
Installationsbeispiele

Refix in Wassererwärmungsanlagen Installationsbeispiele

Refix DD, DT 60-500 mit Flowjet Durchströmungsarmatur



- Die Komplettlösung mit "Flowjet" Durchströmungsarmatur
- Vorteil: Mit Flowjet montieren Sie einfach und DIN-gerecht. Absperrbarkeit, Entleerbarkeit und Durchströmung des Refix sind gewährleistet.
 - Refix DD oder Refix DT 60-500
 - 2 Flowjet Durchströmungsarmatur bei Refix DD optional als Zubehör:
 - Standard mit T-Stück Rp ¾", V ≤ 2,5 m³/h

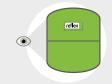

bei Refix DT 60-500' mit Flowjet:

- Standard mit Rp 11/4" $\dot{V} \leq 7.2 \text{ m}^3/\text{h}$
- 3 Reflex Wandhalterung für 8–25 Liter (33 I mit Laschen, DT mit Füßen)
- Ein Sicherheitsventil darf in Strömungsrichtung auch vor Refix DD oder DT5 mit Flowjet eingesetzt werden, sofern der Nenndurchmesser des erforderlichen S_v ≤ der nachfolgenden Speicherzuleitung ist.
- Ohne Flowjet Durchströmungsarmatur muss bei Wartungsarbeiten die Zuleitung zum Wassererwärmer abgesperrt und das Refix DD über eine bauseitige Armatur entleert werden.
 - Refix DD
 - 2 T-Stück Rp 3/4", $\dot{V} \le 2,5 \text{ m}^3/\text{h}$ bei T-Stück Rp 1" $\dot{V} \le 4,2 \text{ m}^3/\text{h}$
 - 3 Reflex Wandhalterung für 8–25 Liter (33 I mit Laschen)

Refix DD ohne Flowjet Durchströmungsarmatur

Refix DT mit Duo-Anschluss

- Für die Absperrung und Entleerung des Refix DT mit Duo-Anschluss sind zusätzliche Armaturen notwendig.
- Das Sicherheitsventil ist unabsperrbar am Kaltwassereintritt des Speichers zu installieren.


Speicherladesysteme werden unter Umständen mit höheren Temperaturen beaufschlagt. Bitte kontaktieren Sie Ihren Reflex Ansprechpartner.

Betrieb & Wartung

Bei Membran-Druckausdehnungsgefäßen ist gemäß der Betriebssicherheitsverordnung (BetrSichV) eine jährliche Wartung erforderlich. Die Reflex Montage-, Betriebs- und Wartungsanleitung mit den notwendigen Hinweisen für den Installateur und Betreiber ist zu beachten.

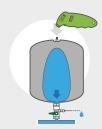
1. Sichtprüfung

- Gefäß auf Beschädigungen, Korrosion usw. überprüfen.
 Bei Schäden Reparatur bzw. Austausch vornehmen und die mögliche Ursache ermitteln.
- Gefäßeignung mit bauseitiger Verwendung abgleichen.

2. Membranprüfung

Das Gasfüllventil kurz betätigen. Sollte Wasser entweichen:

- Bei Gefäßen mit nicht tauschbarer Membran ist ein Austausch des Membran-Druckausdehnungsgefäßes vorzunehmen.
- Bei Gefäßen mit tauschbarer Membran Wechsel vornehmen oder zum weiteren Vorgehen optional Reflex Service kontaktieren.


3. Gas-Vordruckeinstellung

Das Reflex Gefäß durch das Kappenventil (Flowjet) vom System trennen und wasserseitig entleeren.

 $\mbox{Vordruck ρ_0 am Gasfüllventil messen und $ggf.$ wieder auf erforderlichen Mindestbetriebsdruck der Anlage einstellen.}$

$$p_0[bar] = p_a - 0.2 bar^*$$

- * bei großen Distanzen (Druckverlust) zum Druckminderer Differenz zu pa bis auf 1 bar erhöhen.
- Bei zu hohem Druck sollte Gas am Gasfüllventil abgelassen werden.
- Bei zu geringem Druck muss Stickstoff aus einer Druckflasche nachgefüllt werden.
- Neu eingestellten bzw. korrigierten Vordruck p
 auf dem Typenschild eintragen.

4. Funktionsprüfung im Betrieb

- Entleerung am Kappenventil schließen, Kappenventil (Flowjet) vorsichtig öffnen.
- Gasdruckkontrolle in Betrieb
 Gasdruck muss jetzt gleich dem Wasserdruck sein (Vergleich mit Manometer am Druckminderer), dann ist das Gefäß in Funktion.
- Bei aufgeheiztem Speicher darf der Druck am Gefäß bis ca. 0,5 bar unter den Sicherheitsventilansprechdruck steigen.

5. Dichtheitsprüfung Gasfüllventil

Optionale Hilfsmittel zum Füllen und Messen am Gasfüllventil entfernen und mit Lecksuchspray kontrollieren, ob das Gasfüllventil nach der Benutzung wieder dicht schließt. Anschließend die ebenfalls abdichtende Ventilkappe wieder auf das Gasfüllventil aufschrauben.

Das Refix Membran-Druckausdehnungsgefäß ist jetzt wieder betriebsbereit.

Reflex Mehr-Werte

Digitale Service-Angebote

Reflex Solutions Pro -

Einfach und schnell zur kompletten Projektlösung

Mit der nächsten Generation des bewährten Auslegungstools können Produkte aus dem gesamten Reflex Portfolio individuell zusammengestellt und in jeglicher Größenordnung passend zur relevanten Anlage ausgelegt werden – vom Einfamilienhaus über den Wohnbau bis zum industriellen Gewerbe. Ob einzelnes

Jetzt kostenios Ihre Auslegung starten:

Produkt oder komplettes System: Nach Wahl der Anwendung erfolgt die Eingabe der relevanten Anlagenparameter. Schnell und passgenau ermittelt Reflex Solutions Pro die entsprechende Konfiguration. Mit einem Klick kann die vollständige Dokumentation wie Produktdaten, Ausschreibungstexte und BIM-Daten heruntergeladen werden.

rsp.reflex.de

Reflex Training — Vorsprung durch Know-how

Nahe des Unternehmenssitzes in Ahlen werden Fachhandwerker, Planer und Betreiber auf die Herausforderungen der Heizungsund Warmwasserversorgung in der modernen Gebäudetechnik vorbereitet. Von der Installation über Planung und Beratung bis hin zum technischen Betrieb orientiert sich das Reflex Training Center und sein Team an jenen Partnern, die aus erster Hand über Technik, Normen und Service informiert werden möchten. Im modern sanierten, ehemaligen westfälischem Gutshof wird gelerntes Know-how direkt an Reflex Anlagen umgesetzt, trainiert und erlebt. Realitätsgetreue Simulationen und ein umfangreiches Anlagenportfolio tragen zu einer erlebbaren Umsetzung der Inhalte bei, wobei theoretische und praktische Aspekte effektiv miteinander verknüpft werden. Die Reflex4Experts Schulungen gibt es jetzt auch Online. Zum Beispiel als Webinars für PC, Tablet oder Smartphone. Mit kurzen interessanten Lerneinheiten zu aktuellen und spannenden Themen, welche ganz unkompliziert im Büro, von zuhause oder unterwegs verfolgt werden können. Weitere Informationen finden Sie unter www.reflex-winkelmann.com/unternehmen/reflex-training

Reflex Training Center

+49 2382 7069-9581 seminare@reflex.de

Unser Leistungsversprechen – Reflex After Sales & Service

Versorgungstechnische Anlagen werden immer komplexer. Das gilt für die Technik ebenso, wie für Dokumentations- und Prüfpflichten. Mit dem Reflex After Sales & Service sind Sie auch nach dem Kauf in guten Händen. Unsere jahrelange Expertise, spezialisiert auf die Reflex-Lösungswelt, bietet Ihnen höchste Sicherheit und Funktionalität Ihrer Anlage.

- Expertise und langjährige Erfahrung mit allen Reflex Produkten
- Deutschlandweiter Werkskundendienst reaktionsschnell für Sie vor Ort

- Qualifiziertes Personal mit Know-How zu aktuellsten Produkten und Richtlinien
- Einhaltung gesetzlicher Vorschriften und damit der Haftungsund Gewährleistungsbestimmungen
- Optimal eingestellte Anlagen für maximale Effizienz und Funktionalität

QR-Code scannen und Angebot zum Wartungsvertrag einholen! Weitere Informationen zu allen unseren Services erhalten Sie außerdem unter www.reflex-winkelmann.com/servicesdownloads/after-sales-services/

Unsere Produkte überzeugen durch Qualität

Wir sind überzeugt von unserer Produktqualität und gewähren unseren Kunden daher seit dem 01.01.2020 auf unsere Wärmetauscher, Membran-Druckausdehnungsgefäße, Abscheider und Warmwasserspeicher automatisch 5 Jahre Garantie.

Wärmetauscher erhalten eine Garantieerweiterung auf 5 Jahre. Ausgeschlossen sind Fehler in der Installation, die zu vorzeitigem Verschleiß oder reduzierter Funktion führen wie z. B:

- Verkalkung der Anschlussrohre und Plattenkanäle,
- Korrosion durch Kriechstrom
- erhebliche Abweichungen von den in der Anleitung aufgeführten Anforderungen an die Wasserqualität

Werkskundendienst

+49 2382 7069-9505 aftersales@reflex.de

Technische Hotline

+49 2382 7069-9546 aftersales@reflex.de

Kaufmännische Abwicklung

+49 2382 7069-7505 aftersales@reflex.de

Erleben Sie Reflex mit Augmented Reality

Immer auf dem aktuellen Stand

Weitere Produktbroschüren und Materialien können Sie unter www.reflex.de/services-downloads herunterladen sowie als gedruckte Unterlage bestellen.

Reflex Winkelmann GmbH

Gersteinstraße 19 59227 Ahlen Telefon: +49 2382 7069-0 Technische Hotline: +49 2382 7069-9546

www.reflex-winkelmann.com

Reflex Schweiz GmbH

Rührbergweg 7 4133 Pratteln Tel.: +41 61 826 50 60 info@reflexch.ch

www.reflex-winkelmann.com/ch

Reflex Austria GmbH

Hirschstettnerstrasse 19–21 1220 Wien Telefon: +43 1 616 02 50 office@reflex-austria.at

www.reflex-winkelmann.com/at

A WINKELMANN BUILDING+INDUSTRY BRAND